<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">"""Recurrence Operators"""

from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.printing import sstr
from sympy.core.sympify import sympify


def RecurrenceOperators(base, generator):
    """
    Returns an Algebra of Recurrence Operators and the operator for
    shifting i.e. the `Sn` operator.
    The first argument needs to be the base polynomial ring for the algebra
    and the second argument must be a generator which can be either a
    noncommutative Symbol or a string.

    Examples
    ========

    &gt;&gt;&gt; from sympy import ZZ
    &gt;&gt;&gt; from sympy import symbols
    &gt;&gt;&gt; from sympy.holonomic.recurrence import RecurrenceOperators
    &gt;&gt;&gt; n = symbols('n', integer=True)
    &gt;&gt;&gt; R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
    """

    ring = RecurrenceOperatorAlgebra(base, generator)
    return (ring, ring.shift_operator)


class RecurrenceOperatorAlgebra:
    """
    A Recurrence Operator Algebra is a set of noncommutative polynomials
    in intermediate `Sn` and coefficients in a base ring A. It follows the
    commutation rule:
    Sn * a(n) = a(n + 1) * Sn

    This class represents a Recurrence Operator Algebra and serves as the parent ring
    for Recurrence Operators.

    Examples
    ========

    &gt;&gt;&gt; from sympy import ZZ
    &gt;&gt;&gt; from sympy import symbols
    &gt;&gt;&gt; from sympy.holonomic.recurrence import RecurrenceOperators
    &gt;&gt;&gt; n = symbols('n', integer=True)
    &gt;&gt;&gt; R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
    &gt;&gt;&gt; R
    Univariate Recurrence Operator Algebra in intermediate Sn over the base ring
    ZZ[n]

    See Also
    ========

    RecurrenceOperator
    """

    def __init__(self, base, generator):
        # the base ring for the algebra
        self.base = base
        # the operator representing shift i.e. `Sn`
        self.shift_operator = RecurrenceOperator(
            [base.zero, base.one], self)

        if generator is None:
            self.gen_symbol = symbols('Sn', commutative=False)
        else:
            if isinstance(generator, str):
                self.gen_symbol = symbols(generator, commutative=False)
            elif isinstance(generator, Symbol):
                self.gen_symbol = generator

    def __str__(self):
        string = 'Univariate Recurrence Operator Algebra in intermediate '\
            + sstr(self.gen_symbol) + ' over the base ring ' + \
            (self.base).__str__()

        return string

    __repr__ = __str__

    def __eq__(self, other):
        if self.base == other.base and self.gen_symbol == other.gen_symbol:
            return True
        else:
            return False


def _add_lists(list1, list2):
    if len(list1) &lt;= len(list2):
        sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
    else:
        sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
    return sol


class RecurrenceOperator:
    """
    The Recurrence Operators are defined by a list of polynomials
    in the base ring and the parent ring of the Operator.

    Explanation
    ===========

    Takes a list of polynomials for each power of Sn and the
    parent ring which must be an instance of RecurrenceOperatorAlgebra.

    A Recurrence Operator can be created easily using
    the operator `Sn`. See examples below.

    Examples
    ========

    &gt;&gt;&gt; from sympy.holonomic.recurrence import RecurrenceOperator, RecurrenceOperators
    &gt;&gt;&gt; from sympy import ZZ
    &gt;&gt;&gt; from sympy import symbols
    &gt;&gt;&gt; n = symbols('n', integer=True)
    &gt;&gt;&gt; R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n),'Sn')

    &gt;&gt;&gt; RecurrenceOperator([0, 1, n**2], R)
    (1)Sn + (n**2)Sn**2

    &gt;&gt;&gt; Sn*n
    (n + 1)Sn

    &gt;&gt;&gt; n*Sn*n + 1 - Sn**2*n
    (1) + (n**2 + n)Sn + (-n - 2)Sn**2

    See Also
    ========

    DifferentialOperatorAlgebra
    """

    _op_priority = 20

    def __init__(self, list_of_poly, parent):
        # the parent ring for this operator
        # must be an RecurrenceOperatorAlgebra object
        self.parent = parent
        # sequence of polynomials in n for each power of Sn
        # represents the operator
        # convert the expressions into ring elements using from_sympy
        if isinstance(list_of_poly, list):
            for i, j in enumerate(list_of_poly):
                if isinstance(j, int):
                    list_of_poly[i] = self.parent.base.from_sympy(S(j))
                elif not isinstance(j, self.parent.base.dtype):
                    list_of_poly[i] = self.parent.base.from_sympy(j)

            self.listofpoly = list_of_poly
        self.order = len(self.listofpoly) - 1

    def __mul__(self, other):
        """
        Multiplies two Operators and returns another
        RecurrenceOperator instance using the commutation rule
        Sn * a(n) = a(n + 1) * Sn
        """

        listofself = self.listofpoly
        base = self.parent.base

        if not isinstance(other, RecurrenceOperator):
            if not isinstance(other, self.parent.base.dtype):
                listofother = [self.parent.base.from_sympy(sympify(other))]

            else:
                listofother = [other]
        else:
            listofother = other.listofpoly
        # multiply a polynomial `b` with a list of polynomials

        def _mul_dmp_diffop(b, listofother):
            if isinstance(listofother, list):
                sol = []
                for i in listofother:
                    sol.append(i * b)
                return sol
            else:
                return [b * listofother]

        sol = _mul_dmp_diffop(listofself[0], listofother)

        # compute Sn^i * b
        def _mul_Sni_b(b):
            sol = [base.zero]

            if isinstance(b, list):
                for i in b:
                    j = base.to_sympy(i).subs(base.gens[0], base.gens[0] + S.One)
                    sol.append(base.from_sympy(j))

            else:
                j = b.subs(base.gens[0], base.gens[0] + S.One)
                sol.append(base.from_sympy(j))

            return sol

        for i in range(1, len(listofself)):
            # find Sn^i * b in ith iteration
            listofother = _mul_Sni_b(listofother)
            # solution = solution + listofself[i] * (Sn^i * b)
            sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))

        return RecurrenceOperator(sol, self.parent)

    def __rmul__(self, other):
        if not isinstance(other, RecurrenceOperator):

            if isinstance(other, int):
                other = S(other)

            if not isinstance(other, self.parent.base.dtype):
                other = (self.parent.base).from_sympy(other)

            sol = []
            for j in self.listofpoly:
                sol.append(other * j)

            return RecurrenceOperator(sol, self.parent)

    def __add__(self, other):
        if isinstance(other, RecurrenceOperator):

            sol = _add_lists(self.listofpoly, other.listofpoly)
            return RecurrenceOperator(sol, self.parent)

        else:

            if isinstance(other, int):
                other = S(other)
            list_self = self.listofpoly
            if not isinstance(other, self.parent.base.dtype):
                list_other = [((self.parent).base).from_sympy(other)]
            else:
                list_other = [other]
            sol = []
            sol.append(list_self[0] + list_other[0])
            sol += list_self[1:]

            return RecurrenceOperator(sol, self.parent)

    __radd__ = __add__

    def __sub__(self, other):
        return self + (-1) * other

    def __rsub__(self, other):
        return (-1) * self + other

    def __pow__(self, n):
        if n == 1:
            return self
        if n == 0:
            return RecurrenceOperator([self.parent.base.one], self.parent)
        # if self is `Sn`
        if self.listofpoly == self.parent.shift_operator.listofpoly:
            sol = []
            for i in range(0, n):
                sol.append(self.parent.base.zero)
            sol.append(self.parent.base.one)

            return RecurrenceOperator(sol, self.parent)

        else:
            if n % 2 == 1:
                powreduce = self**(n - 1)
                return powreduce * self
            elif n % 2 == 0:
                powreduce = self**(n / 2)
                return powreduce * powreduce

    def __str__(self):
        listofpoly = self.listofpoly
        print_str = ''

        for i, j in enumerate(listofpoly):
            if j == self.parent.base.zero:
                continue

            if i == 0:
                print_str += '(' + sstr(j) + ')'
                continue

            if print_str:
                print_str += ' + '

            if i == 1:
                print_str += '(' + sstr(j) + ')Sn'
                continue

            print_str += '(' + sstr(j) + ')' + 'Sn**' + sstr(i)

        return print_str

    __repr__ = __str__

    def __eq__(self, other):
        if isinstance(other, RecurrenceOperator):
            if self.listofpoly == other.listofpoly and self.parent == other.parent:
                return True
            else:
                return False
        else:
            if self.listofpoly[0] == other:
                for i in self.listofpoly[1:]:
                    if i is not self.parent.base.zero:
                        return False
                return True
            else:
                return False


class HolonomicSequence:
    """
    A Holonomic Sequence is a type of sequence satisfying a linear homogeneous
    recurrence relation with Polynomial coefficients. Alternatively, A sequence
    is Holonomic if and only if its generating function is a Holonomic Function.
    """

    def __init__(self, recurrence, u0=[]):
        self.recurrence = recurrence
        if not isinstance(u0, list):
            self.u0 = [u0]
        else:
            self.u0 = u0

        if len(self.u0) == 0:
            self._have_init_cond = False
        else:
            self._have_init_cond = True
        self.n = recurrence.parent.base.gens[0]

    def __repr__(self):
        str_sol = 'HolonomicSequence(%s, %s)' % ((self.recurrence).__repr__(), sstr(self.n))
        if not self._have_init_cond:
            return str_sol
        else:
            cond_str = ''
            seq_str = 0
            for i in self.u0:
                cond_str += ', u(%s) = %s' % (sstr(seq_str), sstr(i))
                seq_str += 1

            sol = str_sol + cond_str
            return sol

    __str__ = __repr__

    def __eq__(self, other):
        if self.recurrence == other.recurrence:
            if self.n == other.n:
                if self._have_init_cond and other._have_init_cond:
                    if self.u0 == other.u0:
                        return True
                    else:
                        return False
                else:
                    return True
            else:
                return False
        else:
            return False
</pre></body></html>