U
    9%eE                     @  sr  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	m
Z
 d dlmZ d dlmZ d dlmZ d d	lmZ d d
lmZ d dlmZ d dlmZmZmZmZ d dlmZ d dlm Z m!Z!m"Z" G dd deZ#G dd de#e	Z$G dd dee#Z%G dd dee#Z&G dd dee#Z'G dd de#Z(G dd de
Z)dd Z*dd  Z+e#e#_,e&e#_-e%e#_.e'e#_/e$e#_0e' e#_1d!S )"    )annotations)product)Add)	StdFactKB)
AtomicExprExpr)Pow)S)default_sort_key)sympifysqrt)ImmutableDenseMatrix)BasisDependentZeroBasisDependentBasisDependentMulBasisDependentAdd)
CoordSys3D)Dyadic
BaseDyadic	DyadicAddc                   @  s   e Zd ZU dZdZdZdZded< ded< ded< ded	< ded
< ded< edd Z	dd Z
dd Zdd Zdd Zeje_dd Zdd Zeje_dd Zd*ddZedd  Zd!d" Zeje_d#d$ Zd%d& Zd'd( Zd)S )+Vectorz
    Super class for all Vector classes.
    Ideally, neither this class nor any of its subclasses should be
    instantiated by the user.
    FTg      (@ztype[Vector]
_expr_type	_mul_func	_add_func
_zero_func
_base_func
VectorZerozeroc                 C  s   | j S )a  
        Returns the components of this vector in the form of a
        Python dictionary mapping BaseVector instances to the
        corresponding measure numbers.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v.components
        {C.i: 3, C.j: 4, C.k: 5}

        )_componentsself r"   R/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/sympy/vector/vector.py
components%   s    zVector.componentsc                 C  s   t | | @ S )z7
        Returns the magnitude of this vector.
        r   r    r"   r"   r#   	magnitude:   s    zVector.magnitudec                 C  s   | |    S )z@
        Returns the normalized version of this vector.
        )r%   r    r"   r"   r#   	normalize@   s    zVector.normalizec                   s   t |tr^t  trtjS tj}|j D ].\}}|jd  }||| |jd  7 }q*|S ddl	m
} t ||tfstt|d d t ||r fdd}|S t |S )aN  
        Returns the dot product of this Vector, either with another
        Vector, or a Dyadic, or a Del operator.
        If 'other' is a Vector, returns the dot product scalar (SymPy
        expression).
        If 'other' is a Dyadic, the dot product is returned as a Vector.
        If 'other' is an instance of Del, returns the directional
        derivative operator as a Python function. If this function is
        applied to a scalar expression, it returns the directional
        derivative of the scalar field wrt this Vector.

        Parameters
        ==========

        other: Vector/Dyadic/Del
            The Vector or Dyadic we are dotting with, or a Del operator .

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, Del
        >>> C = CoordSys3D('C')
        >>> delop = Del()
        >>> C.i.dot(C.j)
        0
        >>> C.i & C.i
        1
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v.dot(C.k)
        5
        >>> (C.i & delop)(C.x*C.y*C.z)
        C.y*C.z
        >>> d = C.i.outer(C.i)
        >>> C.i.dot(d)
        C.i

        r      )Delz is not a vector, dyadic or zdel operatorc                   s   ddl m} ||  S )Nr   )directional_derivative)Zsympy.vector.functionsr)   )fieldr)   r    r"   r#   r)   }   s    z*Vector.dot.<locals>.directional_derivative)
isinstancer   r   r   r   r$   itemsargsdotZsympy.vector.deloperatorr(   	TypeErrorstr)r!   otherZoutveckvZvect_dotr(   r)   r"   r    r#   r.   F   s"    (


z
Vector.dotc                 C  s
   |  |S Nr.   r!   r1   r"   r"   r#   __and__   s    zVector.__and__c                 C  sn   t |trdt | trtjS tj}|j D ]4\}}| |jd }||jd }||| 7 }q*|S t| |S )a  
        Returns the cross product of this Vector with another Vector or
        Dyadic instance.
        The cross product is a Vector, if 'other' is a Vector. If 'other'
        is a Dyadic, this returns a Dyadic instance.

        Parameters
        ==========

        other: Vector/Dyadic
            The Vector or Dyadic we are crossing with.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> C.i.cross(C.j)
        C.k
        >>> C.i ^ C.i
        0
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v ^ C.i
        5*C.j + (-4)*C.k
        >>> d = C.i.outer(C.i)
        >>> C.j.cross(d)
        (-1)*(C.k|C.i)

        r   r'   )	r+   r   r   r   r$   r,   crossr-   outer)r!   r1   Zoutdyadr2   r3   Zcross_productr9   r"   r"   r#   r8      s     

zVector.crossc                 C  s
   |  |S r4   r8   r6   r"   r"   r#   __xor__   s    zVector.__xor__c                 C  sV   t |tstdnt | ts(t |tr.tjS dd t| j |j D }t	| S )a  
        Returns the outer product of this vector with another, in the
        form of a Dyadic instance.

        Parameters
        ==========

        other : Vector
            The Vector with respect to which the outer product is to
            be computed.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> N = CoordSys3D('N')
        >>> N.i.outer(N.j)
        (N.i|N.j)

        z!Invalid operand for outer productc                 S  s*   g | ]"\\}}\}}|| t || qS r"   )r   ).0Zk1v1Zk2v2r"   r"   r#   
<listcomp>   s     z Vector.outer.<locals>.<listcomp>)
r+   r   r/   r   r   r   r   r$   r,   r   )r!   r1   r-   r"   r"   r#   r9      s    


zVector.outerc                 C  sP   |  tjr|rtjS tjS |r4| || |  S | || |  |  S dS )a  
        Returns the vector or scalar projection of the 'other' on 'self'.

        Examples
        ========

        >>> from sympy.vector.coordsysrect import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> i, j, k = C.base_vectors()
        >>> v1 = i + j + k
        >>> v2 = 3*i + 4*j
        >>> v1.projection(v2)
        7/3*C.i + 7/3*C.j + 7/3*C.k
        >>> v1.projection(v2, scalar=True)
        7/3

        N)equalsr   r   r	   Zeror.   )r!   r1   Zscalarr"   r"   r#   
projection   s
    zVector.projectionc                   sP   ddl m} t tr&tjtjtjfS tt|  }t	 fdd|D S )a  
        Returns the components of this vector but the output includes
        also zero values components.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, Vector
        >>> C = CoordSys3D('C')
        >>> v1 = 3*C.i + 4*C.j + 5*C.k
        >>> v1._projections
        (3, 4, 5)
        >>> v2 = C.x*C.y*C.z*C.i
        >>> v2._projections
        (C.x*C.y*C.z, 0, 0)
        >>> v3 = Vector.zero
        >>> v3._projections
        (0, 0, 0)
        r   )_get_coord_systemsc                   s   g | ]}  |qS r"   r5   r<   ir    r"   r#   r?     s     z'Vector._projections.<locals>.<listcomp>)
Zsympy.vector.operatorsrC   r+   r   r	   rA   nextiterbase_vectorstuple)r!   rC   Zbase_vecr"   r    r#   _projections   s
    
zVector._projectionsc                 C  s
   |  |S r4   )r9   r6   r"   r"   r#   __or__  s    zVector.__or__c                   s   t  fdd| D S )a  
        Returns the matrix form of this vector with respect to the
        specified coordinate system.

        Parameters
        ==========

        system : CoordSys3D
            The system wrt which the matrix form is to be computed

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> from sympy.abc import a, b, c
        >>> v = a*C.i + b*C.j + c*C.k
        >>> v.to_matrix(C)
        Matrix([
        [a],
        [b],
        [c]])

        c                   s   g | ]}  |qS r"   r5   )r<   Zunit_vecr    r"   r#   r?   3  s     z$Vector.to_matrix.<locals>.<listcomp>)MatrixrH   )r!   systemr"   r    r#   	to_matrix  s    zVector.to_matrixc                 C  s:   i }| j  D ]&\}}||jtj||  ||j< q|S )a  
        The constituents of this vector in different coordinate systems,
        as per its definition.

        Returns a dict mapping each CoordSys3D to the corresponding
        constituent Vector.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> R1 = CoordSys3D('R1')
        >>> R2 = CoordSys3D('R2')
        >>> v = R1.i + R2.i
        >>> v.separate() == {R1: R1.i, R2: R2.i}
        True

        )r$   r,   getrM   r   r   )r!   partsvectmeasurer"   r"   r#   separate6  s    zVector.separatec                 C  sX   t | trt |trtdn6t | trL|tjkr:tdt| t|tjS tddS )z( Helper for division involving vectors. zCannot divide two vectorszCannot divide a vector by zeroz#Invalid division involving a vectorN)	r+   r   r/   r	   rA   
ValueError	VectorMulr   ZNegativeOne)oner1   r"   r"   r#   _div_helperP  s    


zVector._div_helperN)F)__name__
__module____qualname____doc__Z	is_scalarZ	is_Vector_op_priority__annotations__propertyr$   r%   r&   r.   r7   r8   r;   r9   rB   rJ   rK   rN   rS   rW   r"   r"   r"   r#   r      s:   

>,$

r   c                      sJ   e Zd ZdZd fdd	Zedd Zdd Zd	d
 Zedd Z	  Z
S )
BaseVectorz)
    Class to denote a base vector.

    Nc                   s   |d krd |}|d kr$d |}t|}t|}|tddkrJtdt|ts\td|j| }t 	| t
||}||_|t
ji|_t
j|_|jd | |_d| |_||_||_||f|_d	d
i}t||_||_|S )Nzx{}zx_{}r      zindex must be 0, 1 or 2zsystem should be a CoordSys3D. ZcommutativeT)formatr0   rangerT   r+   r   r/   _vector_namessuper__new__r	   _base_instanceOner   _measure_number_name_pretty_form_latex_form_system_idr   Z_assumptions_sys)clsindexrM   
pretty_strZ	latex_strnameobjZassumptions	__class__r"   r#   rg   b  s0    






zBaseVector.__new__c                 C  s   | j S r4   )rn   r    r"   r"   r#   rM     s    zBaseVector.systemc                 C  s   | j S r4   )rk   )r!   printerr"   r"   r#   	_sympystr  s    zBaseVector._sympystrc                 C  s"   | j \}}||d |j|  S )Nra   )ro   _printre   )r!   rx   rr   rM   r"   r"   r#   
_sympyrepr  s    
zBaseVector._sympyreprc                 C  s   | hS r4   r"   r    r"   r"   r#   free_symbols  s    zBaseVector.free_symbols)NN)rX   rY   rZ   r[   rg   r^   rM   ry   r{   r|   __classcell__r"   r"   rv   r#   r_   \  s   #
r_   c                   @  s    e Zd ZdZdd Zdd ZdS )	VectorAddz2
    Class to denote sum of Vector instances.
    c                 O  s   t j| f||}|S r4   )r   rg   rq   r-   optionsru   r"   r"   r#   rg     s    zVectorAdd.__new__c           	      C  sz   d}t |   }|jdd d |D ]D\}}| }|D ].}||jkr<| j| | }|||d 7 }q<q(|d d S )Nrb   c                 S  s   | d   S )Nr   )__str__)xr"   r"   r#   <lambda>      z%VectorAdd._sympystr.<locals>.<lambda>keyz + )listrS   r,   sortrH   r$   rz   )	r!   rx   Zret_strr,   rM   rQ   Z
base_vectsr   Z	temp_vectr"   r"   r#   ry     s    
zVectorAdd._sympystrN)rX   rY   rZ   r[   rg   ry   r"   r"   r"   r#   r~     s   r~   c                   @  s0   e Zd ZdZdd Zedd Zedd ZdS )	rU   z>
    Class to denote products of scalars and BaseVectors.
    c                 O  s   t j| f||}|S r4   )r   rg   r   r"   r"   r#   rg     s    zVectorMul.__new__c                 C  s   | j S )z) The BaseVector involved in the product. )rh   r    r"   r"   r#   base_vector  s    zVectorMul.base_vectorc                 C  s   | j S )zU The scalar expression involved in the definition of
        this VectorMul.
        )rj   r    r"   r"   r#   measure_number  s    zVectorMul.measure_numberN)rX   rY   rZ   r[   rg   r^   r   r   r"   r"   r"   r#   rU     s   
rU   c                   @  s$   e Zd ZdZdZdZdZdd ZdS )r   z'
    Class to denote a zero vector
    g333333(@0z\mathbf{\hat{0}}c                 C  s   t | }|S r4   )r   rg   )rq   ru   r"   r"   r#   rg     s    
zVectorZero.__new__N)rX   rY   rZ   r[   r\   rl   rm   rg   r"   r"   r"   r#   r     s
   r   c                   @  s    e Zd ZdZdd Zdd ZdS )Crossa  
    Represents unevaluated Cross product.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Cross
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> Cross(v1, v2)
    Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k)
    >>> Cross(v1, v2).doit()
    (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k

    c                 C  sJ   t |}t |}t|t|kr,t|| S t| ||}||_||_|S r4   )r   r
   r   r   rg   _expr1_expr2rq   expr1Zexpr2ru   r"   r"   r#   rg     s    zCross.__new__c                 K  s   t | j| jS r4   )r8   r   r   r!   hintsr"   r"   r#   doit  s    z
Cross.doitNrX   rY   rZ   r[   rg   r   r"   r"   r"   r#   r     s   
r   c                   @  s    e Zd ZdZdd Zdd ZdS )Dota  
    Represents unevaluated Dot product.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Dot
    >>> from sympy import symbols
    >>> R = CoordSys3D('R')
    >>> a, b, c = symbols('a b c')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = a * R.i + b * R.j + c * R.k
    >>> Dot(v1, v2)
    Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k)
    >>> Dot(v1, v2).doit()
    a + b + c

    c                 C  sB   t |}t |}t||gtd\}}t| ||}||_||_|S )Nr   )r   sortedr
   r   rg   r   r   r   r"   r"   r#   rg     s    zDot.__new__c                 K  s   t | j| jS r4   )r.   r   r   r   r"   r"   r#   r     s    zDot.doitNr   r"   r"   r"   r#   r     s   	r   c                   s  t  tr$tfdd jD S t trHt fddjD S t  trt tr jjkrЈ jd }jd }||krtjS dddh	||h
 }|d d |krdnd}| j |  S dd	lm} z| j}W n  tk
r   t  Y S X t|S t  ts0t tr6tjS t  trftt j \}}	|	t| S t trttj \}
}|t |
 S t S )
a^  
    Returns cross product of two vectors.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector.vector import cross
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> cross(v1, v2)
    (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k

    c                 3  s   | ]}t | V  qd S r4   r:   rD   vect2r"   r#   	<genexpr>!  s     zcross.<locals>.<genexpr>c                 3  s   | ]}t  |V  qd S r4   r:   rD   vect1r"   r#   r   #  s     r   r'      r`   express)r+   r   r~   fromiterr-   r_   rp   r   r   
differencepoprH   	functionsr   rT   r   r8   r   rU   rF   rG   r$   r,   )r   r   Zn1Zn2Zn3signr   r3   r=   m1r>   m2r"   r   r   r#   r8     s8    




r8   c                   sF  t  tr$tfdd jD S t trHt fddjD S t  trt tr jjkr| krvtjS tjS ddl	m
} z| j}W n tk
r   t  Y S X t |S t  tst trtjS t  trtt j \}}|t| S t tr<ttj \}}|t | S t S )a2  
    Returns dot product of two vectors.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector.vector import dot
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> dot(v1, v2)
    R.x + R.y + R.z

    c                 3  s   | ]}t | V  qd S r4   r5   rD   r   r"   r#   r   Q  s     zdot.<locals>.<genexpr>c                 3  s   | ]}t  |V  qd S r4   r5   rD   r   r"   r#   r   S  s     r'   r   )r+   r   r   r-   r_   rp   r	   ri   rA   r   r   rT   r   r.   r   rU   rF   rG   r$   r,   )r   r   r   r3   r=   r   r>   r   r"   r   r#   r.   @  s,    


r.   N)2
__future__r   	itertoolsr   Zsympy.core.addr   Zsympy.core.assumptionsr   Zsympy.core.exprr   r   Zsympy.core.powerr   Zsympy.core.singletonr	   Zsympy.core.sortingr
   Zsympy.core.sympifyr   Z(sympy.functions.elementary.miscellaneousr   Zsympy.matrices.immutabler   rL   Zsympy.vector.basisdependentr   r   r   r   Zsympy.vector.coordsysrectr   Zsympy.vector.dyadicr   r   r   r   r_   r~   rU   r   r   r   r8   r.   r   r   r   r   r   r   r"   r"   r"   r#   <module>   s<     K9 !0*