U
    9%e2                     @   s   d Z ddlZddlmZmZmZ ddlmZ ddlm	Z	m
Z
 ddlmZ e
eZd	d
dZdZG dd deZe	ejddddG dd deZe	ejddddG dd deZe	ejddddG dd deZG dd deZdS )z BARK model configuration    N)DictOptionalUnion   )PretrainedConfig)add_start_docstringslogging   )CONFIG_MAPPINGz?https://huggingface.co/suno/bark-small/resolve/main/config.jsonz9https://huggingface.co/suno/bark/resolve/main/config.json)zsuno/bark-smallz	suno/barka
  
    This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        block_size (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        input_vocab_size (`int`, *optional*, defaults to 10_048):
            Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
            regards to the chosen sub-model.
        output_vocab_size (`int`, *optional*, defaults to 10_048):
            Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
            by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
            with regards to the chosen sub-model.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the given sub-model.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer architecture.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the linear layers and layer norm layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
c                
       sz   e Zd ZdZdgZdddddZd fdd	Zedee	e
jf eee	e
jf  eeeee	ef  e	ddddZ  ZS )BarkSubModelConfigZbark_moduleZpast_key_values	num_heads
num_layersinput_vocab_size
block_size)Znum_attention_headsZnum_hidden_layersZ
vocab_sizeZwindow_size   @'                T{Gz?c                    sN   || _ || _|| _|| _|| _|| _|| _|| _|
| _|	| _	t
 jf | d S )N)r   r   output_vocab_sizer   r   hidden_sizedropoutbias	use_cacheinitializer_rangesuper__init__)selfr   r   r   r   r   r   r   r   r   r   kwargs	__class__ j/var/www/html/Darija-Ai-API/env/lib/python3.8/site-packages/transformers/models/bark/configuration_bark.pyr   R   s    zBarkSubModelConfig.__init__NFmainr   )pretrained_model_name_or_path	cache_dirforce_downloadlocal_files_onlytokenrevisionreturnc           	      K   s   ||d< ||d< ||d< ||d< |  || | j|f|\}}|ddkr\|| j d }d|krt| dr|d | jkrtd|d  d	| j d
 | j|f|S )Nr&   r'   r(   r*   
model_typebark_configzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)Z_set_token_in_kwargsZget_config_dictgetr,   hasattrloggerwarning	from_dict)	clsr%   r&   r'   r(   r)   r*   r   Zconfig_dictr"   r"   r#   from_pretrainedm   s     z"BarkSubModelConfig.from_pretrained)
r   r   r   r   r   r   r   Tr   T)NFFNr$   )__name__
__module____qualname__r,   Zkeys_to_ignore_at_inferenceZattribute_mapr   classmethodr   strosPathLiker   boolr5   __classcell__r"   r"   r    r#   r   G   sB   	               r   BarkSemanticConfigZBarkSemanticModel)configmodela  
    Example:

    ```python
    >>> from transformers import BarkSemanticConfig, BarkSemanticModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkSemanticConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkSemanticModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   @   s   e Zd ZdZdS )r?   ZsemanticNr6   r7   r8   r,   r"   r"   r"   r#   r?      s   BarkCoarseConfigZBarkCoarseModela  
    Example:

    ```python
    >>> from transformers import BarkCoarseConfig, BarkCoarseModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkCoarseConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkCoarseModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   @   s   e Zd ZdZdS )rC   Zcoarse_acousticsNrB   r"   r"   r"   r#   rC      s   BarkFineConfigZBarkFineModela   
        n_codes_total (`int`, *optional*, defaults to 8):
            The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
        n_codes_given (`int`, *optional*, defaults to 1):
            The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
            sub-models.
    Example:

    ```python
    >>> from transformers import BarkFineConfig, BarkFineModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkFineConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkFineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                       s"   e Zd ZdZd fdd	Z  ZS )rD   Zfine_acousticsT      c                    s&   || _ || _t jf d|i| d S )Ntie_word_embeddings)n_codes_totaln_codes_givenr   r   )r   rG   rH   rI   r   r    r"   r#   r      s    zBarkFineConfig.__init__)TrE   rF   )r6   r7   r8   r,   r   r>   r"   r"   r    r#   rD      s   c                       sJ   e Zd ZdZdZd
eeeed fddZeee	e
eddd	Z  ZS )
BarkConfiga  
    This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
    model according to the specified sub-models configurations, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
    [suno/bark](https://huggingface.co/suno/bark) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
    semantic_config ([`BarkSemanticConfig`], *optional*):
        Configuration of the underlying semantic sub-model.
    coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
        Configuration of the underlying coarse acoustics sub-model.
    fine_acoustics_config ([`BarkFineConfig`], *optional*):
        Configuration of the underlying fine acoustics sub-model.
    codec_config ([`AutoConfig`], *optional*):
        Configuration of the underlying codec sub-model.

    Example:

    ```python
    >>> from transformers import (
    ...     BarkSemanticConfig,
    ...     BarkCoarseConfig,
    ...     BarkFineConfig,
    ...     BarkModel,
    ...     BarkConfig,
    ...     AutoConfig,
    ... )

    >>> # Initializing Bark sub-modules configurations.
    >>> semantic_config = BarkSemanticConfig()
    >>> coarse_acoustics_config = BarkCoarseConfig()
    >>> fine_acoustics_config = BarkFineConfig()
    >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")


    >>> # Initializing a Bark module style configuration
    >>> configuration = BarkConfig.from_sub_model_configs(
    ...     semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
    ... )

    >>> # Initializing a model (with random weights)
    >>> model = BarkModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    r-   Nr   semantic_configcoarse_acoustics_configfine_acoustics_configcodec_configc                    s   |d kri }t d |d kr,i }t d |d krBi }t d |d krXi }t d tf || _tf || _tf || _d|kr|d nd}t| f || _	|| _
t jf | d S )NzMsemantic_config is None. initializing the semantic model with default values.zScoarse_acoustics_config is None. initializing the coarse model with default values.zOfine_acoustics_config is None. initializing the fine model with default values.zGcodec_config is None. initializing the codec model with default values.r,   Zencodec)r1   infor?   rL   rC   rM   rD   rN   r
   rO   r   r   r   )r   rL   rM   rN   rO   r   r   Zcodec_model_typer    r"   r#   r     s&    	



zBarkConfig.__init__c                 K   s(   | f |  |  |  |  d|S )z
        Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.

        Returns:
            [`BarkConfig`]: An instance of a configuration object
        rK   )to_dict)r4   rL   rM   rN   rO   r   r"   r"   r#   from_sub_model_configs5  s    z!BarkConfig.from_sub_model_configs)NNNNr   )r6   r7   r8   __doc__r,   r   r   r9   r?   rC   rD   r   rR   r>   r"   r"   r    r#   rJ      s&   4     #rJ   )rS   r;   typingr   r   r   Zconfiguration_utilsr   utilsr   r   autor
   Z
get_loggerr6   r1   Z"BARK_PRETRAINED_CONFIG_ARCHIVE_MAPZ#BARK_SUBMODELCONFIG_START_DOCSTRINGr   formatr?   rC   rD   rJ   r"   r"   r"   r#   <module>   s6   
&G
