<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;"># coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Swin2SR Transformer model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "caidas/swin2sr-classicalsr-x2-64": (
        "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
    ),
}


class Swin2SRConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Swin2SRModel`]. It is used to instantiate a Swin
    Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
    [caidas/swin2sr-classicalsr-x2-64](https://huggingface.co/caidas/swin2sr-classicalsr-x2-64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 64):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 1):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 180):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 8):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 2.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        upscale (`int`, *optional*, defaults to 2):
            The upscale factor for the image. 2/3/4/8 for image super resolution, 1 for denoising and compress artifact
            reduction
        img_range (`float`, *optional*, defaults to 1.):
            The range of the values of the input image.
        resi_connection (`str`, *optional*, defaults to `"1conv"`):
            The convolutional block to use before the residual connection in each stage.
        upsampler (`str`, *optional*, defaults to `"pixelshuffle"`):
            The reconstruction reconstruction module. Can be 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None.

    Example:

    ```python
    &gt;&gt;&gt; from transformers import Swin2SRConfig, Swin2SRModel

    &gt;&gt;&gt; # Initializing a Swin2SR caidas/swin2sr-classicalsr-x2-64 style configuration
    &gt;&gt;&gt; configuration = Swin2SRConfig()

    &gt;&gt;&gt; # Initializing a model (with random weights) from the caidas/swin2sr-classicalsr-x2-64 style configuration
    &gt;&gt;&gt; model = Swin2SRModel(configuration)

    &gt;&gt;&gt; # Accessing the model configuration
    &gt;&gt;&gt; configuration = model.config
    ```"""
    model_type = "swin2sr"

    attribute_map = {
        "hidden_size": "embed_dim",
        "num_attention_heads": "num_heads",
        "num_hidden_layers": "num_layers",
    }

    def __init__(
        self,
        image_size=64,
        patch_size=1,
        num_channels=3,
        embed_dim=180,
        depths=[6, 6, 6, 6, 6, 6],
        num_heads=[6, 6, 6, 6, 6, 6],
        window_size=8,
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        upscale=2,
        img_range=1.0,
        resi_connection="1conv",
        upsampler="pixelshuffle",
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_layers = len(depths)
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.upscale = upscale
        self.img_range = img_range
        self.resi_connection = resi_connection
        self.upsampler = upsampler
</pre></body></html>