U
    -e
                     @   s,   d Z ddlmZ ddlZdgZdddZdS )z;Functions for computing the harmonic centrality of a graph.    )partialNharmonic_centralityc           
      C   s   |dk	rt | |nt | j}|dk	r6t | |n| j}ttj| |d}dd |D }|D ]B}||}||D ]*}|| }	|	dkrqt||  d|	 7  < qtq^|S )a%  Compute harmonic centrality for nodes.

    Harmonic centrality [1]_ of a node `u` is the sum of the reciprocal
    of the shortest path distances from all other nodes to `u`

    .. math::

        C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}

    where `d(v, u)` is the shortest-path distance between `v` and `u`.

    If `sources` is given as an argument, the returned harmonic centrality
    values are calculated as the sum of the reciprocals of the shortest
    path distances from the nodes specified in `sources` to `u` instead
    of from all nodes to `u`.

    Notice that higher values indicate higher centrality.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    nbunch : container (default: all nodes in G)
      Container of nodes for which harmonic centrality values are calculated.

    sources : container (default: all nodes in G)
      Container of nodes `v` over which reciprocal distances are computed.
      Nodes not in `G` are silently ignored.

    distance : edge attribute key, optional (default=None)
      Use the specified edge attribute as the edge distance in shortest
      path calculations.  If `None`, then each edge will have distance equal to 1.

    Returns
    -------
    nodes : dictionary
      Dictionary of nodes with harmonic centrality as the value.

    See Also
    --------
    betweenness_centrality, load_centrality, eigenvector_centrality,
    degree_centrality, closeness_centrality

    Notes
    -----
    If the 'distance' keyword is set to an edge attribute key then the
    shortest-path length will be computed using Dijkstra's algorithm with
    that edge attribute as the edge weight.

    References
    ----------
    .. [1] Boldi, Paolo, and Sebastiano Vigna. "Axioms for centrality."
           Internet Mathematics 10.3-4 (2014): 222-262.
    N)weightc                 S   s   i | ]
}|d qS )r    ).0ur   r   h/var/www/html/Darija-Ai-Train/env/lib/python3.8/site-packages/networkx/algorithms/centrality/harmonic.py
<dictcomp>F   s      z'harmonic_centrality.<locals>.<dictcomp>r      )setZnbunch_iterZnodesr   nxZshortest_path_lengthintersection)
GZnbunchZdistancesourcesZsplZ
centralityvdistr   dr   r   r   r   	   s    9 )NNN)__doc__	functoolsr   Znetworkxr   __all__r   r   r   r   r   <module>   s   