U
    5d%                     @   s   d Z ddlZddlZddlZddlmZ ddlm	Z	 ddlm
Z
 ddlmZ ddlmZ dd	lmZmZ dd
lmZ ddddgZeddddddZeddddddddddejdddZeddddddddZeddddddddZdS ) zFeature inversion    N   )ParameterError)
griffinlim)db_to_power)tiny)filters)nnls	expand_to)deprecate_positional_argsmel_to_stftmel_to_audiomfcc_to_melmfcc_to_audioi"V  i   g       @srn_fftpowerc                K   s@   t jf ||| jd | jd|}t|| }tj|d| |dS )a  Approximate STFT magnitude from a Mel power spectrogram.

    Parameters
    ----------
    M : np.ndarray [shape=(..., n_mels, n), non-negative]
        The spectrogram as produced by `feature.melspectrogram`
    sr : number > 0 [scalar]
        sampling rate of the underlying signal
    n_fft : int > 0 [scalar]
        number of FFT components in the resulting STFT
    power : float > 0 [scalar]
        Exponent for the magnitude melspectrogram
    **kwargs : additional keyword arguments
        Mel filter bank parameters.
        See `librosa.filters.mel` for details

    Returns
    -------
    S : np.ndarray [shape=(..., n_fft, t), non-negative]
        An approximate linear magnitude spectrogram

    See Also
    --------
    librosa.feature.melspectrogram
    librosa.stft
    librosa.filters.mel
    librosa.util.nnls

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))
    >>> mel_spec = librosa.feature.melspectrogram(S=S, sr=sr)
    >>> S_inv = librosa.feature.inverse.mel_to_stft(mel_spec, sr=sr)

    Compare the results visually

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
    >>> img = librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max, top_db=None),
    ...                          y_axis='log', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='Original STFT')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S_inv, ref=np.max, top_db=None),
    ...                          y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Reconstructed STFT')
    >>> ax[1].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(S_inv - S),
    ...                                                  ref=S.max(), top_db=None),
    ...                          vmax=0, y_axis='log', x_axis='time', cmap='magma', ax=ax[2])
    >>> ax[2].set(title='Residual error (dB)')
    >>> fig.colorbar(img, ax=ax, format="%+2.f dB")
    )r   r   n_melsdtype      ?)out)r   Zmelshaper   r   npr   )Mr   r   r   kwargsZ	mel_basisZinverse r   ;/tmp/pip-unpacked-wheel-8l90aumz/librosa/feature/inverse.pyr      s    9   
ZhannTZconstant    )r   r   
hop_length
win_lengthwindowcenterpad_moder   n_iterlengthr   c                K   s4   t | f|||d|}t||	|||||||
|d
S )a{  Invert a mel power spectrogram to audio using Griffin-Lim.

    This is primarily a convenience wrapper for:

        >>> S = librosa.feature.inverse.mel_to_stft(M)
        >>> y = librosa.griffinlim(S)

    Parameters
    ----------
    M : np.ndarray [shape=(..., n_mels, n), non-negative]
        The spectrogram as produced by `feature.melspectrogram`
    sr : number > 0 [scalar]
        sampling rate of the underlying signal
    n_fft : int > 0 [scalar]
        number of FFT components in the resulting STFT
    hop_length : None or int > 0
        The hop length of the STFT.  If not provided, it will default to ``n_fft // 4``
    win_length : None or int > 0
        The window length of the STFT.  By default, it will equal ``n_fft``
    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        A window specification as supported by `stft` or `istft`
    center : boolean
        If `True`, the STFT is assumed to use centered frames.
        If `False`, the STFT is assumed to use left-aligned frames.
    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.
    power : float > 0 [scalar]
        Exponent for the magnitude melspectrogram
    n_iter : int > 0
        The number of iterations for Griffin-Lim
    length : None or int > 0
        If provided, the output ``y`` is zero-padded or clipped to exactly ``length``
        samples.
    dtype : np.dtype
        Real numeric type for the time-domain signal.  Default is 32-bit float.
    **kwargs : additional keyword arguments
        Mel filter bank parameters

    Returns
    -------
    y : np.ndarray [shape(..., n,)]
        time-domain signal reconstructed from ``M``

    See Also
    --------
    librosa.griffinlim
    librosa.feature.melspectrogram
    librosa.filters.mel
    librosa.feature.inverse.mel_to_stft
    r   )	r$   r   r    r   r!   r"   r   r%   r#   )r   r   )r   r   r   r   r    r!   r"   r#   r   r$   r%   r   r   Zstftr   r   r   r   Y   s    E   Zorthor   r   dct_typenormreflifterc          
      C   s   |dkr| j d }tjdd| | jd}t|| jdd}d|d ttj| |   }tt	|t
|jjk rtjdtdd	 | |t|   } n|dkrtd
tjj| d|||d}	t|	|dS )ao  Invert Mel-frequency cepstral coefficients to approximate a Mel power
    spectrogram.

    This inversion proceeds in two steps:

        1. The inverse DCT is applied to the MFCCs
        2. `librosa.db_to_power` is applied to map the dB-scaled result to a power spectrogram

    Parameters
    ----------
    mfcc : np.ndarray [shape=(..., n_mfcc, n)]
        The Mel-frequency cepstral coefficients

    n_mels : int > 0
        The number of Mel frequencies

    dct_type : {1, 2, 3}
        Discrete cosine transform (DCT) type
        By default, DCT type-2 is used.

    norm : None or 'ortho'
        If ``dct_type`` is `2 or 3`, setting ``norm='ortho'`` uses an orthonormal
        DCT basis.

        Normalization is not supported for `dct_type=1`.

    ref : number or callable
        Reference power for (inverse) decibel calculation

    lifter : number >= 0
        If ``lifter>0``, apply inverse liftering (inverse cepstral filtering)::

            M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter) * lifter / 2)

    Returns
    -------
    M : np.ndarray [shape=(..., n_mels, n)]
        An approximate Mel power spectrum recovered from ``mfcc``

    Warns
    -----
    UserWarning
        due to critical values in lifter array that invokes underflow.

    See Also
    --------
    librosa.feature.mfcc
    librosa.feature.melspectrogram
    scipy.fftpack.dct
    r   r      )r   )ndimZaxesg      ?z@lifter array includes critical values that may invoke underflow.r   )messagecategory
stacklevelz1MFCC to mel lifter must be a non-negative number.)Zaxistyper)   n)r*   )r   r   Zaranger   r	   r-   sinpianyabsZfinfoZepswarningswarnUserWarningr   r   scipyZfftpackZidctr   )
mfccr   r(   r)   r*   r+   Zn_mfccidxZlifter_sineZlogmelr   r   r   r      s     4
 c                K   s    t | |||||d}t|f|S )ax  Convert Mel-frequency cepstral coefficients to a time-domain audio signal

    This function is primarily a convenience wrapper for the following steps:

        1. Convert mfcc to Mel power spectrum (`mfcc_to_mel`)
        2. Convert Mel power spectrum to time-domain audio (`mel_to_audio`)

    Parameters
    ----------
    mfcc : np.ndarray [shape=(..., n_mfcc, n)]
        The Mel-frequency cepstral coefficients

    n_mels : int > 0
        The number of Mel frequencies

    dct_type : {1, 2, 3}
        Discrete cosine transform (DCT) type
        By default, DCT type-2 is used.

    norm : None or 'ortho'
        If ``dct_type`` is `2 or 3`, setting ``norm='ortho'`` uses an orthonormal
        DCT basis.

        Normalization is not supported for ``dct_type=1``.

    ref : number or callable
        Reference power for (inverse) decibel calculation

    lifter : number >= 0
        If ``lifter>0``, apply inverse liftering (inverse cepstral filtering)::

            M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter)) * lifter / 2

    **kwargs : additional keyword arguments
        Parameters to pass through to `mel_to_audio`

    Returns
    -------
    y : np.ndarray [shape=(..., n)]
        A time-domain signal reconstructed from `mfcc`

    See Also
    --------
    mfcc_to_mel
    mel_to_audio
    librosa.feature.mfcc
    librosa.griffinlim
    scipy.fftpack.dct
    r'   )r   r   )r;   r   r(   r)   r*   r+   r   Zmel_specr   r   r   r      s    5     )__doc__r7   Znumpyr   Zscipy.fftpackr:   Zutil.exceptionsr   Zcore.spectrumr   r   Z
util.utilsr    r   utilr   r	   Zutil.decoratorsr
   __all__r   Zfloat32r   r   r   r   r   r   r   <module>   sF   CTK    