U
    5dz                    @   s  d Z ddlZddlZddlZddlZddlmZ ddl	m
Z
 ddlmZ ddlmZ dd	lmZ d
Zdddddddddddddddddddddd d!d"d#d$d%d&gZed'd(d(d)d*dZee
d+d,e d-d.dZedd/d0dZd1d Zed'd2d3dZed4d Zed'd2d5dZeddd6d7d8dZed'd(dd9d:dZee
d;d,ejdddd<d=dZedd2d>dZedd2d?dZed@d Z ee
d;d,dAddBdCdZ!edej"dDdEd Z#edddd6dFdGdZ$ee
d;d,dd6d'dHdIdZ%edd(dJdKdZ&dLd! Z'eddMdNdZ(edd'dOdPd"Z)ej*d6d6dQdd'dRdSdTZ+dd'dRdUdVZ,edd'dRdWdZ-edd2dXdZ.eej/dYdZd#Z0eej"dYd[d$Z1ej*d6d6dQd\d] Z2ed'd2d^d%Z3ej*d6d6dQd_d` Z4ed'd2dad&Z5dS )bzUtility functions    N)
as_strided   )cache   )ParameterError)
Deprecated)deprecate_positional_argsi   MAX_MEM_BLOCKframe
pad_center	expand_to
fix_lengthvalid_audio	valid_intvalid_intervals
fix_frames	axis_sortlocalmaxlocalmin	normalize	peak_picksparsify_rowsshearstackfill_off_diagonalindex_to_slicesyncsoftmaskbuf_to_floattinycyclic_gradient	dtype_r2c	dtype_c2rcount_unique	is_uniqueF)axis	writeablesubokc                C   s   t j| d|d} | j| |k r4td| j| ||dk rJtd|| jt| j| g }t| j}||  |d 8  < t|t|g }t| ||||d}	|dk r|d }
n|d }
t 	|	d|
}	t
d	g|	j }t
dd	|||< |	t| S )
a  Slice a data array into (overlapping) frames.

    This implementation uses low-level stride manipulation to avoid
    making a copy of the data.  The resulting frame representation
    is a new view of the same input data.

    For example, a one-dimensional input ``x = [0, 1, 2, 3, 4, 5, 6]``
    can be framed with frame length 3 and hop length 2 in two ways.
    The first (``axis=-1``), results in the array ``x_frames``::

        [[0, 2, 4],
         [1, 3, 5],
         [2, 4, 6]]

    where each column ``x_frames[:, i]`` contains a contiguous slice of
    the input ``x[i * hop_length : i * hop_length + frame_length]``.

    The second way (``axis=0``) results in the array ``x_frames``::

        [[0, 1, 2],
         [2, 3, 4],
         [4, 5, 6]]

    where each row ``x_frames[i]`` contains a contiguous slice of the input.

    This generalizes to higher dimensional inputs, as shown in the examples below.
    In general, the framing operation increments by 1 the number of dimensions,
    adding a new "frame axis" either before the framing axis (if ``axis < 0``)
    or after the framing axis (if ``axis >= 0``).

    Parameters
    ----------
    x : np.ndarray
        Array to frame
    frame_length : int > 0 [scalar]
        Length of the frame
    hop_length : int > 0 [scalar]
        Number of steps to advance between frames
    axis : int
        The axis along which to frame.
    writeable : bool
        If ``True``, then the framed view of ``x`` is read-only.
        If ``False``, then the framed view is read-write.  Note that writing to the framed view
        will also write to the input array ``x`` in this case.
    subok : bool
        If True, sub-classes will be passed-through, otherwise the returned array will be
        forced to be a base-class array (default).

    Returns
    -------
    x_frames : np.ndarray [shape=(..., frame_length, N_FRAMES, ...)]
        A framed view of ``x``, for example with ``axis=-1`` (framing on the last dimension)::

            x_frames[..., j] == x[..., j * hop_length : j * hop_length + frame_length]

        If ``axis=0`` (framing on the first dimension), then::

            x_frames[j] = x[j * hop_length : j * hop_length + frame_length]

    Raises
    ------
    ParameterError
        If ``x.shape[axis] < frame_length``, there is not enough data to fill one frame.

        If ``hop_length < 1``, frames cannot advance.

    See Also
    --------
    numpy.lib.stride_tricks.as_strided

    Examples
    --------
    Extract 2048-sample frames from monophonic signal with a hop of 64 samples per frame

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64)
    >>> frames
    array([[-1.407e-03, -2.604e-02, ..., -1.795e-05, -8.108e-06],
           [-4.461e-04, -3.721e-02, ..., -1.573e-05, -1.652e-05],
           ...,
           [ 7.960e-02, -2.335e-01, ..., -6.815e-06,  1.266e-05],
           [ 9.568e-02, -1.252e-01, ...,  7.397e-06, -1.921e-05]],
          dtype=float32)
    >>> y.shape
    (117601,)

    >>> frames.shape
    (2048, 1806)

    Or frame along the first axis instead of the last:

    >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64, axis=0)
    >>> frames.shape
    (1806, 2048)

    Frame a stereo signal:

    >>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False)
    >>> y.shape
    (2, 117601)
    >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64)
    (2, 2048, 1806)

    Carve an STFT into fixed-length patches of 32 frames with 50% overlap

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))
    >>> S.shape
    (1025, 230)
    >>> S_patch = librosa.util.frame(S, frame_length=32, hop_length=16)
    >>> S_patch.shape
    (1025, 32, 13)
    >>> # The first patch contains the first 32 frames of S
    >>> np.allclose(S_patch[:, :, 0], S[:, :32])
    True
    >>> # The second patch contains frames 16 to 16+32=48, and so on
    >>> np.allclose(S_patch[:, :, 1], S[:, 16:48])
    True
    F)copyr(   z1Input is too short (n={:d}) for frame_length={:d}r   zInvalid hop_length: {:d})stridesshaper(   r'   r   r%   N)nparrayr+   r   formatr*   tuplelistr   Zmoveaxisslicendim)xZframe_lengthZ
hop_lengthr&   r'   r(   Zout_stridesZx_shape_trimmedZ	out_shapeZxwZtarget_axisslices r5   6/tmp/pip-unpacked-wheel-8l90aumz/librosa/util/utils.pyr
   4   s8    } 
    
   )level)monoc                C   s   t | tjstdt| jtjs,td| jdkrFtd| j	t |t
rTd}|rv| jdkrvtd| j| j	t|  stdd	S )
af  Determine whether a variable contains valid audio data.

    The following conditions must be satisfied:

    - ``type(y)`` is ``np.ndarray``
    - ``y.dtype`` is floating-point
    - ``y.ndim != 0`` (must have at least one dimension)
    - ``np.isfinite(y).all()`` samples must be all finite values

    If ``mono`` is specified, then we additionally require
    - ``y.ndim == 1``

    Parameters
    ----------
    y : np.ndarray
        The input data to validate

    mono : bool
        Whether or not to require monophonic audio

        .. warning:: The ``mono`` parameter is deprecated in version 0.9 and will be
          removed in 0.10.

    Returns
    -------
    valid : bool
        True if all tests pass

    Raises
    ------
    ParameterError
        In any of the conditions specified above fails

    Notes
    -----
    This function caches at level 20.

    Examples
    --------
    >>> # By default, valid_audio allows only mono signals
    >>> filepath = librosa.ex('trumpet', hq=True)
    >>> y_mono, sr = librosa.load(filepath, mono=True)
    >>> y_stereo, _ = librosa.load(filepath, mono=False)
    >>> librosa.util.valid_audio(y_mono), librosa.util.valid_audio(y_stereo)
    True, False

    >>> # To allow stereo signals, set mono=False
    >>> librosa.util.valid_audio(y_stereo, mono=False)
    True

    See Also
    --------
    numpy.float32
    z(Audio data must be of type numpy.ndarrayz!Audio data must be floating-pointr   z=Audio data must be at least one-dimensional, given y.shape={}Fr   z7Invalid shape for monophonic audio: ndim={:d}, shape={}z%Audio buffer is not finite everywhereT)
isinstancer,   Zndarrayr   
issubdtypedtypefloatingr2   r.   r+   r   isfiniteall)yr9   r5   r5   r6   r      s,    :

 castc                C   s*   |dkrt j}t|stdt|| S )a  Ensure that an input value is integer-typed.
    This is primarily useful for ensuring integrable-valued
    array indices.

    Parameters
    ----------
    x : number
        A scalar value to be cast to int
    cast : function [optional]
        A function to modify ``x`` before casting.
        Default: `np.floor`

    Returns
    -------
    x_int : int
        ``x_int = int(cast(x))``

    Raises
    ------
    ParameterError
        If ``cast`` is provided and is not callable.
    Nzcast parameter must be callable)r,   floorcallabler   int)r3   rB   r5   r5   r6   r   +  s
    c                 C   sX   | j dks| jd dkr tdt| dddf | dddf krTtd| dS )	a  Ensure that an array is a valid representation of time intervals:

        - intervals.ndim == 2
        - intervals.shape[1] == 2
        - intervals[i, 0] <= intervals[i, 1] for all i

    Parameters
    ----------
    intervals : np.ndarray [shape=(n, 2)]
        set of time intervals

    Returns
    -------
    valid : bool
        True if ``intervals`` passes validation.
    r   r%   z intervals must have shape (n, 2)Nr   r   z-intervals={} must have non-negative durationsT)r2   r+   r   r,   anyr.   )Z	intervalsr5   r5   r6   r   M  s    &r&   c                K   sr   | dd | j| }t|| d }dg| j }|t|| | f||< |dk rbtd||tj| |f|S )a(  Pad an array to a target length along a target axis.

    This differs from `np.pad` by centering the data prior to padding,
    analogous to `str.center`

    Examples
    --------
    >>> # Generate a vector
    >>> data = np.ones(5)
    >>> librosa.util.pad_center(data, size=10, mode='constant')
    array([ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.,  0.])

    >>> # Pad a matrix along its first dimension
    >>> data = np.ones((3, 5))
    >>> librosa.util.pad_center(data, size=7, axis=0)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 1.,  1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.,  1.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> # Or its second dimension
    >>> librosa.util.pad_center(data, size=7, axis=1)
    array([[ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
           [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
           [ 0.,  1.,  1.,  1.,  1.,  1.,  0.]])

    Parameters
    ----------
    data : np.ndarray
        Vector to be padded and centered
    size : int >= len(data) [scalar]
        Length to pad ``data``
    axis : int
        Axis along which to pad and center the data
    **kwargs : additional keyword arguments
        arguments passed to `np.pad`

    Returns
    -------
    data_padded : np.ndarray
        ``data`` centered and padded to length ``size`` along the
        specified axis

    Raises
    ------
    ParameterError
        If ``size < data.shape[axis]``

    See Also
    --------
    numpy.pad
    modeconstantr   r   r   r   z5Target size ({:d}) must be at least input size ({:d}))
setdefaultr+   rE   r2   r   r.   r,   pad)datasizer&   kwargsnZlpadlengthsr5   r5   r6   r   j  s    9

c                C   s   zt |}W n tk
r*   t |g}Y nX t|| jkrLtd|| j|| jk rhtd| j|dg| }t|D ]\}}| j| ||< qz| |S )a  Expand the dimensions of an input array with

    Parameters
    ----------
    x : np.ndarray
        The input array
    ndim : int
        The number of dimensions to expand to.  Must be at least ``x.ndim``
    axes : int or slice
        The target axis or axes to preserve from x.
        All other axes will have length 1.

    Returns
    -------
    x_exp : np.ndarray
        The expanded version of ``x``, satisfying the following:
            ``x_exp[axes] == x``
            ``x_exp.ndim == ndim``

    See Also
    --------
    np.expand_dims

    Examples
    --------
    Expand a 1d array into an (n, 1) shape

    >>> x = np.arange(3)
    >>> librosa.util.expand_to(x, ndim=2, axes=0)
    array([[0],
       [1],
       [2]])

    Expand a 1d array into a (1, n) shape

    >>> librosa.util.expand_to(x, ndim=2, axes=1)
    array([[0, 1, 2]])

    Expand a 2d array into (1, n, m, 1) shape

    >>> x = np.vander(np.arange(3))
    >>> librosa.util.expand_to(x, ndim=4, axes=[1,2]).shape
    (1, 3, 3, 1)
    z3Shape mismatch between axes={} and input x.shape={}z4Cannot expand x.shape={} to fewer dimensions ndim={}r   )	r/   	TypeErrorlenr2   r   r.   r+   	enumeratereshape)r3   r2   Zaxesr+   iZaxir5   r5   r6   r     s     1

c                K   s   | dd | j| }||krHtdg| j }td|||< | t| S ||k r|dg| j }d|| f||< tj| |f|S | S )am  Fix the length an array ``data`` to exactly ``size`` along a target axis.

    If ``data.shape[axis] < n``, pad according to the provided kwargs.
    By default, ``data`` is padded with trailing zeros.

    Examples
    --------
    >>> y = np.arange(7)
    >>> # Default: pad with zeros
    >>> librosa.util.fix_length(y, size=10)
    array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0])
    >>> # Trim to a desired length
    >>> librosa.util.fix_length(y, size=5)
    array([0, 1, 2, 3, 4])
    >>> # Use edge-padding instead of zeros
    >>> librosa.util.fix_length(y, size=10, mode='edge')
    array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6])

    Parameters
    ----------
    data : np.ndarray
        array to be length-adjusted
    size : int >= 0 [scalar]
        desired length of the array
    axis : int, <= data.ndim
        axis along which to fix length
    **kwargs : additional keyword arguments
        Parameters to ``np.pad``

    Returns
    -------
    data_fixed : np.ndarray [shape=data.shape]
        ``data`` either trimmed or padded to length ``size``
        along the specified axis.

    See Also
    --------
    numpy.pad
    rH   rI   Nr   rJ   )rK   r+   r1   r2   r/   r,   rL   )rM   rN   r&   rO   rP   r4   rQ   r5   r5   r6   r     s    *
Tx_minx_maxrL   c                C   s   t | } t | dk r td|rB|dk	s4|dk	rBt | ||} |r|g }|dk	r\|| |dk	rn|| t || f} |dk	r| | |k } |dk	r| | |k } t | t	S )av  Fix a list of frames to lie within [x_min, x_max]

    Examples
    --------
    >>> # Generate a list of frame indices
    >>> frames = np.arange(0, 1000.0, 50)
    >>> frames
    array([   0.,   50.,  100.,  150.,  200.,  250.,  300.,  350.,
            400.,  450.,  500.,  550.,  600.,  650.,  700.,  750.,
            800.,  850.,  900.,  950.])
    >>> # Clip to span at most 250
    >>> librosa.util.fix_frames(frames, x_max=250)
    array([  0,  50, 100, 150, 200, 250])
    >>> # Or pad to span up to 2500
    >>> librosa.util.fix_frames(frames, x_max=2500)
    array([   0,   50,  100,  150,  200,  250,  300,  350,  400,
            450,  500,  550,  600,  650,  700,  750,  800,  850,
            900,  950, 2500])
    >>> librosa.util.fix_frames(frames, x_max=2500, pad=False)
    array([  0,  50, 100, 150, 200, 250, 300, 350, 400, 450, 500,
           550, 600, 650, 700, 750, 800, 850, 900, 950])

    >>> # Or starting away from zero
    >>> frames = np.arange(200, 500, 33)
    >>> frames
    array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497])
    >>> librosa.util.fix_frames(frames)
    array([  0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497])
    >>> librosa.util.fix_frames(frames, x_max=500)
    array([  0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497,
           500])

    Parameters
    ----------
    frames : np.ndarray [shape=(n_frames,)]
        List of non-negative frame indices
    x_min : int >= 0 or None
        Minimum allowed frame index
    x_max : int >= 0 or None
        Maximum allowed frame index
    pad : boolean
        If ``True``, then ``frames`` is expanded to span the full range
        ``[x_min, x_max]``

    Returns
    -------
    fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int]
        Fixed frame indices, flattened and sorted

    Raises
    ------
    ParameterError
        If ``frames`` contains negative values
    r   zNegative frame index detectedN)
r,   asarrayrF   r   ZclipappendZconcatenateuniqueastyperE   )framesrX   rY   rL   Zpad_datar5   r5   r6   r   6  s"    9


)r&   indexvaluec                C   s   |dkrt j}| jdkr td|| t d| | jd}t |}tdg| j }|||< |rp| t| |fS | t| S dS )a6
  Sort an array along its rows or columns.

    Examples
    --------
    Visualize NMF output for a spectrogram S

    >>> # Sort the columns of W by peak frequency bin
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))
    >>> W, H = librosa.decompose.decompose(S, n_components=64)
    >>> W_sort = librosa.util.axis_sort(W)

    Or sort by the lowest frequency bin

    >>> W_sort = librosa.util.axis_sort(W, value=np.argmin)

    Or sort the rows instead of the columns

    >>> W_sort_rows = librosa.util.axis_sort(W, axis=0)

    Get the sorting index also, and use it to permute the rows of H

    >>> W_sort, idx = librosa.util.axis_sort(W, index=True)
    >>> H_sort = H[idx, :]

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, ncols=2)
    >>> img_w = librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max),
    ...                                  y_axis='log', ax=ax[0, 0])
    >>> ax[0, 0].set(title='W')
    >>> ax[0, 0].label_outer()
    >>> img_act = librosa.display.specshow(H, x_axis='time', ax=ax[0, 1])
    >>> ax[0, 1].set(title='H')
    >>> ax[0, 1].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(W_sort,
    ...                                                  ref=np.max),
    ...                          y_axis='log', ax=ax[1, 0])
    >>> ax[1, 0].set(title='W sorted')
    >>> librosa.display.specshow(H_sort, x_axis='time', ax=ax[1, 1])
    >>> ax[1, 1].set(title='H sorted')
    >>> ax[1, 1].label_outer()
    >>> fig.colorbar(img_w, ax=ax[:, 0], orientation='horizontal')
    >>> fig.colorbar(img_act, ax=ax[:, 1], orientation='horizontal')

    Parameters
    ----------
    S : np.ndarray [shape=(d, n)]
        Array to be sorted

    axis : int [scalar]
        The axis along which to compute the sorting values

        - ``axis=0`` to sort rows by peak column index
        - ``axis=1`` to sort columns by peak row index

    index : boolean [scalar]
        If true, returns the index array as well as the permuted data.

    value : function
        function to return the index corresponding to the sort order.
        Default: `np.argmax`.

    Returns
    -------
    S_sort : np.ndarray [shape=(d, n)]
        ``S`` with the columns or rows permuted in sorting order
    idx : np.ndarray (optional) [shape=(d,) or (n,)]
        If ``index == True``, the sorting index used to permute ``S``.
        Length of ``idx`` corresponds to the selected ``axis``.

    Raises
    ------
    ParameterError
        If ``S`` does not have exactly 2 dimensions (``S.ndim != 2``)
    Nr   z'axis_sort is only defined for 2D arraysr   rG   )r,   Zargmaxr2   r   modZargsortr1   r/   )Sr&   r_   r`   Zbin_idxidxZ
sort_slicer5   r5   r6   r     s    N

(   )normr&   	thresholdfillc          
      C   s  |dkrt | }n|dkr(td||dkr>td|tt| sVtdt| t}d}|tj	krtj
||dd	}n|tj	 krtj||dd	}n|dkr|dkrtd
tj|dk|d|jd}ntt|tjr>|dkr>tj|| |dd	d|  }|dkr*|jd|  }n|j| d|  }n |dkrL| S tdt|||k }t| }	|dkrd||< | | |	dd< nJ|rtj||< | | |	dd< ||	t|	< ntj	||< | | |	dd< |	S )a  Normalize an array along a chosen axis.

    Given a norm (described below) and a target axis, the input
    array is scaled so that::

        norm(S, axis=axis) == 1

    For example, ``axis=0`` normalizes each column of a 2-d array
    by aggregating over the rows (0-axis).
    Similarly, ``axis=1`` normalizes each row of a 2-d array.

    This function also supports thresholding small-norm slices:
    any slice (i.e., row or column) with norm below a specified
    ``threshold`` can be left un-normalized, set to all-zeros, or
    filled with uniform non-zero values that normalize to 1.

    Note: the semantics of this function differ from
    `scipy.linalg.norm` in two ways: multi-dimensional arrays
    are supported, but matrix-norms are not.

    Parameters
    ----------
    S : np.ndarray
        The array to normalize

    norm : {np.inf, -np.inf, 0, float > 0, None}
        - `np.inf`  : maximum absolute value
        - `-np.inf` : minimum absolute value
        - `0`    : number of non-zeros (the support)
        - float  : corresponding l_p norm
            See `scipy.linalg.norm` for details.
        - None : no normalization is performed

    axis : int [scalar]
        Axis along which to compute the norm.

    threshold : number > 0 [optional]
        Only the columns (or rows) with norm at least ``threshold`` are
        normalized.

        By default, the threshold is determined from
        the numerical precision of ``S.dtype``.

    fill : None or bool
        If None, then columns (or rows) with norm below ``threshold``
        are left as is.

        If False, then columns (rows) with norm below ``threshold``
        are set to 0.

        If True, then columns (rows) with norm below ``threshold``
        are filled uniformly such that the corresponding norm is 1.

        .. note:: ``fill=True`` is incompatible with ``norm=0`` because
            no uniform vector exists with l0 "norm" equal to 1.

    Returns
    -------
    S_norm : np.ndarray [shape=S.shape]
        Normalized array

    Raises
    ------
    ParameterError
        If ``norm`` is not among the valid types defined above

        If ``S`` is not finite

        If ``fill=True`` and ``norm=0``

    See Also
    --------
    scipy.linalg.norm

    Notes
    -----
    This function caches at level 40.

    Examples
    --------
    >>> # Construct an example matrix
    >>> S = np.vander(np.arange(-2.0, 2.0))
    >>> S
    array([[-8.,  4., -2.,  1.],
           [-1.,  1., -1.,  1.],
           [ 0.,  0.,  0.,  1.],
           [ 1.,  1.,  1.,  1.]])
    >>> # Max (l-infinity)-normalize the columns
    >>> librosa.util.normalize(S)
    array([[-1.   ,  1.   , -1.   ,  1.   ],
           [-0.125,  0.25 , -0.5  ,  1.   ],
           [ 0.   ,  0.   ,  0.   ,  1.   ],
           [ 0.125,  0.25 ,  0.5  ,  1.   ]])
    >>> # Max (l-infinity)-normalize the rows
    >>> librosa.util.normalize(S, axis=1)
    array([[-1.   ,  0.5  , -0.25 ,  0.125],
           [-1.   ,  1.   , -1.   ,  1.   ],
           [ 0.   ,  0.   ,  0.   ,  1.   ],
           [ 1.   ,  1.   ,  1.   ,  1.   ]])
    >>> # l1-normalize the columns
    >>> librosa.util.normalize(S, norm=1)
    array([[-0.8  ,  0.667, -0.5  ,  0.25 ],
           [-0.1  ,  0.167, -0.25 ,  0.25 ],
           [ 0.   ,  0.   ,  0.   ,  0.25 ],
           [ 0.1  ,  0.167,  0.25 ,  0.25 ]])
    >>> # l2-normalize the columns
    >>> librosa.util.normalize(S, norm=2)
    array([[-0.985,  0.943, -0.816,  0.5  ],
           [-0.123,  0.236, -0.408,  0.5  ],
           [ 0.   ,  0.   ,  0.   ,  0.5  ],
           [ 0.123,  0.236,  0.408,  0.5  ]])

    >>> # Thresholding and filling
    >>> S[:, -1] = 1e-308
    >>> S
    array([[ -8.000e+000,   4.000e+000,  -2.000e+000,
              1.000e-308],
           [ -1.000e+000,   1.000e+000,  -1.000e+000,
              1.000e-308],
           [  0.000e+000,   0.000e+000,   0.000e+000,
              1.000e-308],
           [  1.000e+000,   1.000e+000,   1.000e+000,
              1.000e-308]])

    >>> # By default, small-norm columns are left untouched
    >>> librosa.util.normalize(S)
    array([[ -1.000e+000,   1.000e+000,  -1.000e+000,
              1.000e-308],
           [ -1.250e-001,   2.500e-001,  -5.000e-001,
              1.000e-308],
           [  0.000e+000,   0.000e+000,   0.000e+000,
              1.000e-308],
           [  1.250e-001,   2.500e-001,   5.000e-001,
              1.000e-308]])
    >>> # Small-norm columns can be zeroed out
    >>> librosa.util.normalize(S, fill=False)
    array([[-1.   ,  1.   , -1.   ,  0.   ],
           [-0.125,  0.25 , -0.5  ,  0.   ],
           [ 0.   ,  0.   ,  0.   ,  0.   ],
           [ 0.125,  0.25 ,  0.5  ,  0.   ]])
    >>> # Or set to constant with unit-norm
    >>> librosa.util.normalize(S, fill=True)
    array([[-1.   ,  1.   , -1.   ,  1.   ],
           [-0.125,  0.25 , -0.5  ,  1.   ],
           [ 0.   ,  0.   ,  0.   ,  1.   ],
           [ 0.125,  0.25 ,  0.5  ,  1.   ]])
    >>> # With an l1 norm instead of max-norm
    >>> librosa.util.normalize(S, norm=1, fill=True)
    array([[-0.8  ,  0.667, -0.5  ,  0.25 ],
           [-0.1  ,  0.167, -0.25 ,  0.25 ],
           [ 0.   ,  0.   ,  0.   ,  0.25 ],
           [ 0.1  ,  0.167,  0.25 ,  0.25 ]])
    Nr   z&threshold={} must be strictly positive)NFTzfill={} must be None or booleanzInput must be finiter   Tr&   keepdimsz*Cannot normalize with norm=0 and fill=True)r&   ri   r<         ?g      zUnsupported norm: {})r   r   r.   r,   r?   r>   absr]   floatinfmaxminsumr<   r;   typenumberrN   r+   repr
empty_likenanisnan)
rb   re   r&   rf   rg   ZmagZ	fill_normlengthZ	small_idxZSnormr5   r5   r6   r     sR     







c                C   s   dg| j  }d||< tj| |dd}tdg| j  }tdd||< tdg| j  }td|j| ||< | |t| k| |t| k@ S )	a  Find local maxima in an array

    An element ``x[i]`` is considered a local maximum if the following
    conditions are met:

    - ``x[i] > x[i-1]``
    - ``x[i] >= x[i+1]``

    Note that the first condition is strict, and that the first element
    ``x[0]`` will never be considered as a local maximum.

    Examples
    --------
    >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1])
    >>> librosa.util.localmax(x)
    array([False, False, False,  True, False,  True, False,  True], dtype=bool)

    >>> # Two-dimensional example
    >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]])
    >>> librosa.util.localmax(x, axis=0)
    array([[False, False, False],
           [ True, False, False],
           [False,  True,  True]], dtype=bool)
    >>> librosa.util.localmax(x, axis=1)
    array([[False, False,  True],
           [False, False,  True],
           [False, False,  True]], dtype=bool)

    Parameters
    ----------
    x : np.ndarray [shape=(d1,d2,...)]
        input vector or array
    axis : int
        axis along which to compute local maximality

    Returns
    -------
    m : np.ndarray [shape=x.shape, dtype=bool]
        indicator array of local maximality along ``axis``

    See Also
    --------
    localmin
    rJ   r   r   edgerH   Nr   r   r2   r,   rL   r1   r+   r/   r3   r&   ZpaddingsZx_padZinds1Zinds2r5   r5   r6   r     s    /c                C   s   dg| j  }d||< tj| |dd}tdg| j  }tdd||< tdg| j  }td|j| ||< | |t| k | |t| k@ S )	a  Find local minima in an array

    An element ``x[i]`` is considered a local minimum if the following
    conditions are met:

    - ``x[i] < x[i-1]``
    - ``x[i] <= x[i+1]``

    Note that the first condition is strict, and that the first element
    ``x[0]`` will never be considered as a local minimum.

    Examples
    --------
    >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1])
    >>> librosa.util.localmin(x)
    array([False,  True, False, False,  True, False,  True, False])

    >>> # Two-dimensional example
    >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]])
    >>> librosa.util.localmin(x, axis=0)
    array([[False, False, False],
           [False,  True,  True],
           [False, False, False]])

    >>> librosa.util.localmin(x, axis=1)
    array([[False,  True, False],
           [False,  True, False],
           [False,  True, False]])

    Parameters
    ----------
    x : np.ndarray [shape=(d1,d2,...)]
        input vector or array
    axis : int
        axis along which to compute local minimality

    Returns
    -------
    m : np.ndarray [shape=x.shape, dtype=bool]
        indicator array of local minimality along ``axis``

    See Also
    --------
    localmax
    rJ   rx   ry   rz   Nr   r{   r   r|   r}   r5   r5   r6   r   
  s    0c                C   sd  |dk rt d|dk r t d|dk r0t d|dk r@t d|dkrPt d|dkr`t d| jdkrrt d	t|tjd
}t|tjd
}t|tjd
}t|tjd
}t|tjd
}|| }td||  }tjjj| t	|dt	|| 
 d}	|| }
td||  }tjjj| t	|
dt	|d}d}|| dk r|| jd k r|| }|dkrf|nd}t| |||  ||< |d7 }q2| jd | }|dkr|nd}|| jd k r || }|dkr|nd}t| |||  ||< |d7 }q| | |	k }|||| k }g }tj }t|d D ]"}||| kr6|| |}q6t|S )aC
  Uses a flexible heuristic to pick peaks in a signal.

    A sample n is selected as an peak if the corresponding ``x[n]``
    fulfills the following three conditions:

    1. ``x[n] == max(x[n - pre_max:n + post_max])``
    2. ``x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta``
    3. ``n - previous_n > wait``

    where ``previous_n`` is the last sample picked as a peak (greedily).

    This implementation is based on [#]_ and [#]_.

    .. [#] Boeck, Sebastian, Florian Krebs, and Markus Schedl.
        "Evaluating the Online Capabilities of Onset Detection Methods." ISMIR.
        2012.

    .. [#] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py

    Parameters
    ----------
    x : np.ndarray [shape=(n,)]
        input signal to peak picks from
    pre_max : int >= 0 [scalar]
        number of samples before ``n`` over which max is computed
    post_max : int >= 1 [scalar]
        number of samples after ``n`` over which max is computed
    pre_avg : int >= 0 [scalar]
        number of samples before ``n`` over which mean is computed
    post_avg : int >= 1 [scalar]
        number of samples after ``n`` over which mean is computed
    delta : float >= 0 [scalar]
        threshold offset for mean
    wait : int >= 0 [scalar]
        number of samples to wait after picking a peak

    Returns
    -------
    peaks : np.ndarray [shape=(n_peaks,), dtype=int]
        indices of peaks in ``x``

    Raises
    ------
    ParameterError
        If any input lies outside its defined range

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr,
    ...                                          hop_length=512,
    ...                                          aggregate=np.median)
    >>> peaks = librosa.util.peak_pick(onset_env, pre_max=3, post_max=3, pre_avg=3, post_avg=5, delta=0.5, wait=10)
    >>> peaks
    array([  3,  27,  40,  61,  72,  88, 103])

    >>> import matplotlib.pyplot as plt
    >>> times = librosa.times_like(onset_env, sr=sr, hop_length=512)
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> D = np.abs(librosa.stft(y))
    >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[0].plot(times, onset_env, alpha=0.8, label='Onset strength')
    >>> ax[0].vlines(times[peaks], 0,
    ...              onset_env.max(), color='r', alpha=0.8,
    ...              label='Selected peaks')
    >>> ax[0].legend(frameon=True, framealpha=0.8)
    >>> ax[0].label_outer()
    r   zpre_max must be non-negativezpre_avg must be non-negativezdelta must be non-negativezwait must be non-negativezpost_max must be positivezpost_avg must be positiver   z#input array must be one-dimensionalrA         ?rI   )rH   origincvalZnearest)rH   r   )r   r2   r   r,   ceilscipyZndimagefiltersZmaximum_filter1drE   ro   Zuniform_filter1dr+   meanrm   Znonzeror[   r-   )r3   Zpre_maxZpost_maxZpre_avgZpost_avgdeltawait
max_lengthZ
max_originZmov_maxZ
avg_lengthZ
avg_originZmov_avgrP   startZ
detectionsZpeaksZ
last_onsetrV   r5   r5   r6   r   H  st    H
       
g{Gz?)quantiler<   c                C   s  | j dkr| d} n| j dkr0td| jd|  krDdk sTn td||dkrb| j}tjj| j|d}t	
| }t	j|dd	d
}t	j|dd}t	j|| dd}t	j||k dd}t|D ]6\}	}
t	||	 ||	|
f k}| |	|f ||	|f< q| S )a~	  Return a row-sparse matrix approximating the input

    Parameters
    ----------
    x : np.ndarray [ndim <= 2]
        The input matrix to sparsify.
    quantile : float in [0, 1.0)
        Percentage of magnitude to discard in each row of ``x``
    dtype : np.dtype, optional
        The dtype of the output array.
        If not provided, then ``x.dtype`` will be used.

    Returns
    -------
    x_sparse : ``scipy.sparse.csr_matrix`` [shape=x.shape]
        Row-sparsified approximation of ``x``

        If ``x.ndim == 1``, then ``x`` is interpreted as a row vector,
        and ``x_sparse.shape == (1, len(x))``.

    Raises
    ------
    ParameterError
        If ``x.ndim > 2``

        If ``quantile`` lies outside ``[0, 1.0)``

    Notes
    -----
    This function caches at level 40.

    Examples
    --------
    >>> # Construct a Hann window to sparsify
    >>> x = scipy.signal.hann(32)
    >>> x
    array([ 0.   ,  0.01 ,  0.041,  0.09 ,  0.156,  0.236,  0.326,
            0.424,  0.525,  0.625,  0.72 ,  0.806,  0.879,  0.937,
            0.977,  0.997,  0.997,  0.977,  0.937,  0.879,  0.806,
            0.72 ,  0.625,  0.525,  0.424,  0.326,  0.236,  0.156,
            0.09 ,  0.041,  0.01 ,  0.   ])
    >>> # Discard the bottom percentile
    >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01)
    >>> x_sparse
    <1x32 sparse matrix of type '<type 'numpy.float64'>'
        with 26 stored elements in Compressed Sparse Row format>
    >>> x_sparse.todense()
    matrix([[ 0.   ,  0.   ,  0.   ,  0.09 ,  0.156,  0.236,  0.326,
              0.424,  0.525,  0.625,  0.72 ,  0.806,  0.879,  0.937,
              0.977,  0.997,  0.997,  0.977,  0.937,  0.879,  0.806,
              0.72 ,  0.625,  0.525,  0.424,  0.326,  0.236,  0.156,
              0.09 ,  0.   ,  0.   ,  0.   ]])
    >>> # Discard up to the bottom 10th percentile
    >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1)
    >>> x_sparse
    <1x32 sparse matrix of type '<type 'numpy.float64'>'
        with 20 stored elements in Compressed Sparse Row format>
    >>> x_sparse.todense()
    matrix([[ 0.   ,  0.   ,  0.   ,  0.   ,  0.   ,  0.   ,  0.326,
              0.424,  0.525,  0.625,  0.72 ,  0.806,  0.879,  0.937,
              0.977,  0.997,  0.997,  0.977,  0.937,  0.879,  0.806,
              0.72 ,  0.625,  0.525,  0.424,  0.326,  0.   ,  0.   ,
              0.   ,  0.   ,  0.   ,  0.   ]])
    r   )r   r%   r   z;Input must have 2 or fewer dimensions. Provided x.shape={}.        zInvalid quantile {:.2f}Nr<   Trh   rG   )r2   rU   r   r.   r+   r<   r   sparseZ
lil_matrixr,   rk   rp   sortZcumsumZargminrT   whereZtocsr)r3   r   r<   Zx_sparseZmagsZnormsZmag_sortZcumulative_magZthreshold_idxrV   jrc   r5   r5   r6   r     s,    D


)n_bytesr<   c                C   s8   dt dd| d >  }d|}|t| || S )a  Convert an integer buffer to floating point values.
    This is primarily useful when loading integer-valued wav data
    into numpy arrays.

    Parameters
    ----------
    x : np.ndarray [dtype=int]
        The integer-valued data buffer
    n_bytes : int [1, 2, 4]
        The number of bytes per sample in ``x``
    dtype : numeric type
        The target output type (default: 32-bit float)

    Returns
    -------
    x_float : np.ndarray [dtype=float]
        The input data buffer cast to floating point
    rj   r      z<i{:d})rl   r.   r,   Z
frombufferr]   )r3   r   r<   Zscalefmtr5   r5   r6   r   I  s    
)idx_minidx_maxsteprL   c                   s0   t | |||d} fddt||dd D S )aK  Generate a slice array from an index array.

    Parameters
    ----------
    idx : list-like
        Array of index boundaries
    idx_min, idx_max : None or int
        Minimum and maximum allowed indices
    step : None or int
        Step size for each slice.  If `None`, then the default
        step of 1 is used.
    pad : boolean
        If `True`, pad ``idx`` to span the range ``idx_min:idx_max``.

    Returns
    -------
    slices : list of slice
        ``slices[i] = slice(idx[i], idx[i+1], step)``
        Additional slice objects may be added at the beginning or end,
        depending on whether ``pad==True`` and the supplied values for
        ``idx_min`` and ``idx_max``.

    See Also
    --------
    fix_frames

    Examples
    --------
    >>> # Generate slices from spaced indices
    >>> librosa.util.index_to_slice(np.arange(20, 100, 15))
    [slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None),
     slice(80, 95, None)]
    >>> # Pad to span the range (0, 100)
    >>> librosa.util.index_to_slice(np.arange(20, 100, 15),
    ...                             idx_min=0, idx_max=100)
    [slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None),
     slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)]
    >>> # Use a step of 5 for each slice
    >>> librosa.util.index_to_slice(np.arange(20, 100, 15),
    ...                             idx_min=0, idx_max=100, step=5)
    [slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5),
     slice(80, 95, 5), slice(95, 100, 5)]
    rW   c                    s   g | ]\}}t || qS r5   )r1   ).0r   endr   r5   r6   
<listcomp>  s     z"index_to_slice.<locals>.<listcomp>r   N)r   zip)rc   r   r   r   rL   Z	idx_fixedr5   r   r6   r   h  s    /)	aggregaterL   r&   c                C   s  |dkrt j}t| j}t dd |D r2|}n>t dd |D rbtt |d|| |d}ntd|t|}t	|||< t j
|t | rdnd	| jd
}tdg| j }	tdg|j }
t|D ]4\}}||	|< ||
|< || t|	 |d|t|
< q|S )a  Synchronous aggregation of a multi-dimensional array between boundaries

    .. note::
        In order to ensure total coverage, boundary points may be added
        to ``idx``.

        If synchronizing a feature matrix against beat tracker output, ensure
        that frame index numbers are properly aligned and use the same hop length.

    Parameters
    ----------
    data : np.ndarray
        multi-dimensional array of features
    idx : iterable of ints or slices
        Either an ordered array of boundary indices, or
        an iterable collection of slice objects.
    aggregate : function
        aggregation function (default: `np.mean`)
    pad : boolean
        If `True`, ``idx`` is padded to span the full range ``[0, data.shape[axis]]``
    axis : int
        The axis along which to aggregate data

    Returns
    -------
    data_sync : ndarray
        ``data_sync`` will have the same dimension as ``data``, except that the ``axis``
        coordinate will be reduced according to ``idx``.

        For example, a 2-dimensional ``data`` with ``axis=-1`` should satisfy::

            data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1)

    Raises
    ------
    ParameterError
        If the index set is not of consistent type (all slices or all integers)

    Notes
    -----
    This function caches at level 40.

    Examples
    --------
    Beat-synchronous CQT spectra

    >>> y, sr = librosa.load(librosa.ex('choice'))
    >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False)
    >>> C = np.abs(librosa.cqt(y=y, sr=sr))
    >>> beats = librosa.util.fix_frames(beats)

    By default, use mean aggregation

    >>> C_avg = librosa.util.sync(C, beats)

    Use median-aggregation instead of mean

    >>> C_med = librosa.util.sync(C, beats,
    ...                              aggregate=np.median)

    Or sub-beat synchronization

    >>> sub_beats = librosa.segment.subsegment(C, beats)
    >>> sub_beats = librosa.util.fix_frames(sub_beats)
    >>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median)

    Plot the results

    >>> import matplotlib.pyplot as plt
    >>> beat_t = librosa.frames_to_time(beats, sr=sr)
    >>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr)
    >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
    >>> librosa.display.specshow(librosa.amplitude_to_db(C,
    ...                                                  ref=np.max),
    ...                          x_axis='time', ax=ax[0])
    >>> ax[0].set(title='CQT power, shape={}'.format(C.shape))
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(C_med,
    ...                                                  ref=np.max),
    ...                          x_coords=beat_t, x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Beat synchronous CQT power, '
    ...                 'shape={}'.format(C_med.shape))
    >>> ax[1].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub,
    ...                                                  ref=np.max),
    ...                          x_coords=subbeat_t, x_axis='time', ax=ax[2])
    >>> ax[2].set(title='Sub-beat synchronous CQT power, '
    ...                 'shape={}'.format(C_med_sub.shape))
    Nc                 S   s   g | ]}t |tqS r5   )r:   r1   r   _r5   r5   r6   r     s     zsync.<locals>.<listcomp>c                 S   s   g | ]}t t|t jqS r5   )r,   r;   rq   integerr   r5   r5   r6   r     s     r   )r   r   rL   zInvalid index set: {}FC)orderr<   rG   )r,   r   r0   r+   r?   r   rZ   r   r.   rS   emptyZ	isfortranr<   r1   r2   rT   r/   )rM   rc   r   rL   r&   r+   r4   Z	agg_shapeZdata_aggZidx_inZidx_aggrV   segmentr5   r5   r6   r     s6    ]
     )powersplit_zerosc          
      C   s   | j |j kr td| j |j t| dk s<t|dk rDtd|dkrTtd| j}t|tjsntj}t	| |
|}|t|jk }d||< t|r| | | }|| | }| }	||	  ||	 ||	    < |rd||< qd||< n| |k}|S )au	  Robustly compute a soft-mask operation.

        ``M = X**power / (X**power + X_ref**power)``

    Parameters
    ----------
    X : np.ndarray
        The (non-negative) input array corresponding to the positive mask elements

    X_ref : np.ndarray
        The (non-negative) array of reference or background elements.
        Must have the same shape as ``X``.

    power : number > 0 or np.inf
        If finite, returns the soft mask computed in a numerically stable way

        If infinite, returns a hard (binary) mask equivalent to ``X > X_ref``.
        Note: for hard masks, ties are always broken in favor of ``X_ref`` (``mask=0``).

    split_zeros : bool
        If `True`, entries where ``X`` and ``X_ref`` are both small (close to 0)
        will receive mask values of 0.5.

        Otherwise, the mask is set to 0 for these entries.

    Returns
    -------
    mask : np.ndarray, shape=X.shape
        The output mask array

    Raises
    ------
    ParameterError
        If ``X`` and ``X_ref`` have different shapes.

        If ``X`` or ``X_ref`` are negative anywhere

        If ``power <= 0``

    Examples
    --------
    >>> X = 2 * np.ones((3, 3))
    >>> X_ref = np.vander(np.arange(3.0))
    >>> X
    array([[ 2.,  2.,  2.],
           [ 2.,  2.,  2.],
           [ 2.,  2.,  2.]])
    >>> X_ref
    array([[ 0.,  0.,  1.],
           [ 1.,  1.,  1.],
           [ 4.,  2.,  1.]])
    >>> librosa.util.softmask(X, X_ref, power=1)
    array([[ 1.   ,  1.   ,  0.667],
           [ 0.667,  0.667,  0.667],
           [ 0.333,  0.5  ,  0.667]])
    >>> librosa.util.softmask(X_ref, X, power=1)
    array([[ 0.   ,  0.   ,  0.333],
           [ 0.333,  0.333,  0.333],
           [ 0.667,  0.5  ,  0.333]])
    >>> librosa.util.softmask(X, X_ref, power=2)
    array([[ 1. ,  1. ,  0.8],
           [ 0.8,  0.8,  0.8],
           [ 0.2,  0.5,  0.8]])
    >>> librosa.util.softmask(X, X_ref, power=4)
    array([[ 1.   ,  1.   ,  0.941],
           [ 0.941,  0.941,  0.941],
           [ 0.059,  0.5  ,  0.941]])
    >>> librosa.util.softmask(X, X_ref, power=100)
    array([[  1.000e+00,   1.000e+00,   1.000e+00],
           [  1.000e+00,   1.000e+00,   1.000e+00],
           [  7.889e-31,   5.000e-01,   1.000e+00]])
    >>> librosa.util.softmask(X, X_ref, power=np.inf)
    array([[ True,  True,  True],
           [ True,  True,  True],
           [False, False,  True]], dtype=bool)
    zShape mismatch: {}!={}r   z X and X_ref must be non-negativezpower must be strictly positiver   r~   r   )r+   r   r.   r,   rF   r<   r;   r=   float32maximumr]   finfor   r>   )
XZX_refr   r   r<   ZZbad_idxmaskZref_maskZgood_idxr5   r5   r6   r     s,    N


c                 C   sD   t | } t | jt js*t | jt jr2| j}nt j}t |jS )a  Compute the tiny-value corresponding to an input's data type.

    This is the smallest "usable" number representable in ``x.dtype``
    (e.g., float32).

    This is primarily useful for determining a threshold for
    numerical underflow in division or multiplication operations.

    Parameters
    ----------
    x : number or np.ndarray
        The array to compute the tiny-value for.
        All that matters here is ``x.dtype``

    Returns
    -------
    tiny_value : float
        The smallest positive usable number for the type of ``x``.
        If ``x`` is integer-typed, then the tiny value for ``np.float32``
        is returned instead.

    See Also
    --------
    numpy.finfo

    Examples
    --------
    For a standard double-precision floating point number:

    >>> librosa.util.tiny(1.0)
    2.2250738585072014e-308

    Or explicitly as double-precision

    >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64))
    2.2250738585072014e-308

    Or complex numbers

    >>> librosa.util.tiny(1j)
    2.2250738585072014e-308

    Single-precision floating point:

    >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32))
    1.1754944e-38

    Integer

    >>> librosa.util.tiny(5)
    1.1754944e-38
    )	r,   rZ   r;   r<   r=   Zcomplexfloatingr   r   r   )r3   r<   r5   r5   r6   r     s    7
 )r`   c                C   s   | j \}}t|t| j  }| j \}}t| j d | j d  }||k rptj| || d}tj| | d}n"tj| |d}tj| | | d}|| |< || |< dS )a.  Sets all cells of a matrix to a given ``value``
    if they lie outside a constraint region.

    In this case, the constraint region is the
    Sakoe-Chiba band which runs with a fixed ``radius``
    along the main diagonal.

    When ``x.shape[0] != x.shape[1]``, the radius will be
    expanded so that ``x[-1, -1] = 1`` always.

    ``x`` will be modified in place.

    Parameters
    ----------
    x : np.ndarray [shape=(N, M)]
        Input matrix, will be modified in place.
    radius : float
        The band radius (1/2 of the width) will be
        ``int(radius*min(x.shape))``
    value : int
        ``x[n, m] = value`` when ``(n, m)`` lies outside the band.

    Examples
    --------
    >>> x = np.ones((8, 8))
    >>> librosa.util.fill_off_diagonal(x, radius=0.25)
    >>> x
    array([[1, 1, 0, 0, 0, 0, 0, 0],
           [1, 1, 1, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0, 0],
           [0, 0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 1, 1, 1],
           [0, 0, 0, 0, 0, 0, 1, 1]])
    >>> x = np.ones((8, 12))
    >>> librosa.util.fill_off_diagonal(x, radius=0.25)
    >>> x
    array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
           [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
           [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
           [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]])
    r   r   )kN)r+   r,   roundro   rk   Ztriu_indices_fromZtril_indices_from)r3   Zradiusr`   ZnxnyoffsetZidx_uZidx_lr5   r5   r6   r     s    1


edge_orderr&   c                C   sd   dg| j  }||f||< tj| |dd}tj|||d}tdg| j  }t|| ||< |t| S )a.  Estimate the gradient of a function over a uniformly sampled,
    periodic domain.

    This is essentially the same as `np.gradient`, except that edge effects
    are handled by wrapping the observations (i.e. assuming periodicity)
    rather than extrapolation.

    Parameters
    ----------
    data : np.ndarray
        The function values observed at uniformly spaced positions on
        a periodic domain
    edge_order : {1, 2}
        The order of the difference approximation used for estimating
        the gradient
    axis : int
        The axis along which gradients are calculated.

    Returns
    -------
    grad : np.ndarray like ``data``
        The gradient of ``data`` taken along the specified axis.

    See Also
    --------
    numpy.gradient

    Examples
    --------
    This example estimates the gradient of cosine (-sine) from 64
    samples using direct (aperiodic) and periodic gradient
    calculation.

    >>> import matplotlib.pyplot as plt
    >>> x = 2 * np.pi * np.linspace(0, 1, num=64, endpoint=False)
    >>> y = np.cos(x)
    >>> grad = np.gradient(y)
    >>> cyclic_grad = librosa.util.cyclic_gradient(y)
    >>> true_grad = -np.sin(x) * 2 * np.pi / len(x)
    >>> fig, ax = plt.subplots()
    >>> ax.plot(x, true_grad, label='True gradient', linewidth=5,
    ...          alpha=0.35)
    >>> ax.plot(x, cyclic_grad, label='cyclic_gradient')
    >>> ax.plot(x, grad, label='np.gradient', linestyle=':')
    >>> ax.legend()
    >>> # Zoom into the first part of the sequence
    >>> ax.set(xlim=[0, np.pi/16], ylim=[-0.025, 0.025])
    rJ   wraprz   r   N)r2   r,   rL   Zgradientr1   r/   )rM   r   r&   paddingZdata_padZgradr4   r5   r5   r6   r      s    3)Znopythonr   factorr&   c                C   sf   |dkr| j } t| }t| jd D ],}t| dd|f || |dd|f< q&|dkrb|j }|S )z2Numba-accelerated shear for dense (ndarray) arraysr   r   N)Tr,   rt   ranger+   roll)r   r   r&   X_shearrV   r5   r5   r6   __shear_denseV  s    
*r   c                C   sz   | j }|dkr| j} | jdd}t|t|jd  t|j}tj	|j
| |jd |j
d |dkrp|j}||S )zFast shearing for sparse matrices

    Shearing is performed using CSC array indices,
    and the result is converted back to whatever sparse format
    the data was originally provided in.
    r   T)r)   r   )out)r.   r   Ztocscr,   repeatZaranger+   ZdiffZindptrra   indicesZasformat)r   r   r&   r   r   r   r5   r5   r6   __shear_sparseh  s    $r   c                C   sL   t t|t js td|tj| r:t	| ||dS t
| ||dS dS )ae  Shear a matrix by a given factor.

    The column ``X[:, n]`` will be displaced (rolled)
    by ``factor * n``

    This is primarily useful for converting between lag and recurrence
    representations: shearing with ``factor=-1`` converts the main diagonal
    to a horizontal.  Shearing with ``factor=1`` converts a horizontal to
    a diagonal.

    Parameters
    ----------
    X : np.ndarray [ndim=2] or scipy.sparse matrix
        The array to be sheared
    factor : integer
        The shear factor: ``X[:, n] -> np.roll(X[:, n], factor * n)``
    axis : integer
        The axis along which to shear

    Returns
    -------
    X_shear : same type as ``X``
        The sheared matrix

    Examples
    --------
    >>> E = np.eye(3)
    >>> librosa.util.shear(E, factor=-1, axis=-1)
    array([[1., 1., 1.],
           [0., 0., 0.],
           [0., 0., 0.]])
    >>> librosa.util.shear(E, factor=-1, axis=0)
    array([[1., 0., 0.],
           [1., 0., 0.],
           [1., 0., 0.]])
    >>> librosa.util.shear(E, factor=1, axis=-1)
    array([[1., 0., 0.],
           [0., 0., 1.],
           [0., 1., 0.]])
    z factor={} must be integer-valuedr   N)r,   r;   rq   r   r   r.   r   r   Z
isspmatrixr   r   )r   r   r&   r5   r5   r6   r     s
    +c                C   s   dd | D }t |dkr$tdnt |dk r8td| }|dkrVtj| |dS tt | gt| }tdd	 | D g }tj||d
d}tj| ||d |S dS )a+  Stack one or more arrays along a target axis.

    This function is similar to `np.stack`, except that memory contiguity is
    retained when stacking along the first dimension.

    This is useful when combining multiple monophonic audio signals into a
    multi-channel signal, or when stacking multiple feature representations
    to form a multi-dimensional array.

    Parameters
    ----------
    arrays : list
        one or more `np.ndarray`
    axis : integer
        The target axis along which to stack.  ``axis=0`` creates a new first axis,
        and ``axis=-1`` creates a new last axis.

    Returns
    -------
    arr_stack : np.ndarray [shape=(len(arrays), array_shape) or shape=(array_shape, len(arrays))]
        The input arrays, stacked along the target dimension.

        If ``axis=0``, then ``arr_stack`` will be F-contiguous.
        Otherwise, ``arr_stack`` will be C-contiguous by default, as computed by
        `np.stack`.

    Raises
    ------
    ParameterError
        - If ``arrays`` do not all have the same shape
        - If no ``arrays`` are given

    See Also
    --------
    numpy.stack
    numpy.ndarray.flags
    frame

    Examples
    --------
    Combine two buffers into a contiguous arrays

    >>> y_left = np.ones(5)
    >>> y_right = -np.ones(5)
    >>> y_stereo = librosa.util.stack([y_left, y_right], axis=0)
    >>> y_stereo
    array([[ 1.,  1.,  1.,  1.,  1.],
           [-1., -1., -1., -1., -1.]])
    >>> y_stereo.flags
      C_CONTIGUOUS : False
      F_CONTIGUOUS : True
      OWNDATA : True
      WRITEABLE : True
      ALIGNED : True
      WRITEBACKIFCOPY : False
      UPDATEIFCOPY : False

    Or along the trailing axis

    >>> y_stereo = librosa.util.stack([y_left, y_right], axis=-1)
    >>> y_stereo
    array([[ 1., -1.],
           [ 1., -1.],
           [ 1., -1.],
           [ 1., -1.],
           [ 1., -1.]])
    >>> y_stereo.flags
      C_CONTIGUOUS : True
      F_CONTIGUOUS : False
      OWNDATA : True
      WRITEABLE : True
      ALIGNED : True
      WRITEBACKIFCOPY : False
      UPDATEIFCOPY : False
    c                 S   s   h | ]
}|j qS r5   )r+   r   Zarrr5   r5   r6   	<setcomp>  s     zstack.<locals>.<setcomp>r   z)all input arrays must have the same shapez3at least one input array must be provided for stackr   rG   c                 S   s   g | ]
}|j qS r5   r   r   r5   r5   r6   r     s     zstack.<locals>.<listcomp>r   )r<   r   )r&   r   N)	rS   r   popr,   r   r/   r0   Zfind_common_typer   )Zarraysr&   ZshapesZshape_inr+   r<   resultr5   r5   r6   r     s    N
)defaultc                C   s\   t t jt jt t jt jt tt tji}t | }|j	dkrJ|S t |
||S )a  Find the complex numpy dtype corresponding to a real dtype.

    This is used to maintain numerical precision and memory footprint
    when constructing complex arrays from real-valued data
    (e.g. in a Fourier transform).

    A `float32` (single-precision) type maps to `complex64`,
    while a `float64` (double-precision) maps to `complex128`.

    Parameters
    ----------
    d : np.dtype
        The real-valued dtype to convert to complex.
        If ``d`` is a complex type already, it will be returned.
    default : np.dtype, optional
        The default complex target type, if ``d`` does not match a
        known dtype

    Returns
    -------
    d_c : np.dtype
        The complex dtype

    See Also
    --------
    dtype_c2r
    numpy.dtype

    Examples
    --------
    >>> librosa.util.dtype_r2c(np.float32)
    dtype('complex64')

    >>> librosa.util.dtype_r2c(np.int16)
    dtype('complex64')

    >>> librosa.util.dtype_r2c(np.complex128)
    dtype('complex128')
    c)r,   r<   r   	complex64float64
complex128rl   complexrq   kindgetdr   mappingdtr5   r5   r6   r!   !  s    *
 
  


c                C   sd   t t jt jt t jt jt tt t jji}t | }|j	dkrL|S t |
t | |S )a(  Find the real numpy dtype corresponding to a complex dtype.

    This is used to maintain numerical precision and memory footprint
    when constructing real arrays from complex-valued data
    (e.g. in an inverse Fourier transform).

    A `complex64` (single-precision) type maps to `float32`,
    while a `complex128` (double-precision) maps to `float64`.

    Parameters
    ----------
    d : np.dtype
        The complex-valued dtype to convert to real.
        If ``d`` is a real (float) type already, it will be returned.
    default : np.dtype, optional
        The default real target type, if ``d`` does not match a
        known dtype

    Returns
    -------
    d_r : np.dtype
        The real dtype

    See Also
    --------
    dtype_r2c
    numpy.dtype

    Examples
    --------
    >>> librosa.util.dtype_r2c(np.complex64)
    dtype('float32')

    >>> librosa.util.dtype_r2c(np.float32)
    dtype('float32')

    >>> librosa.util.dtype_r2c(np.int16)
    dtype('float32')

    >>> librosa.util.dtype_r2c(np.complex128)
    dtype('float64')
    f)r,   r<   r   r   r   r   r   rl   rq   r   r   r   r5   r5   r6   r"   Z  s    -
 
  

c                 C   s   t | }|jd S )zCounts the number of unique values in an array.

    This function is a helper for `count_unique` and is not
    to be called directly.
    r   )r,   r\   r+   r3   Zuniquesr5   r5   r6   __count_unique  s    
r   c                C   s   t t|| S )a  Count the number of unique values in a multi-dimensional array
    along a given axis.

    Parameters
    ----------
    data : np.ndarray
        The input array
    axis : int
        The target axis to count

    Returns
    -------
    n_uniques
        The number of unique values.
        This array will have one fewer dimension than the input.

    See Also
    --------
    is_unique

    Examples
    --------
    >>> x = np.vander(np.arange(5))
    >>> x
    array([[  0,   0,   0,   0,   1],
       [  1,   1,   1,   1,   1],
       [ 16,   8,   4,   2,   1],
       [ 81,  27,   9,   3,   1],
       [256,  64,  16,   4,   1]])
    >>> # Count unique values along rows (within columns)
    >>> librosa.util.count_unique(x, axis=0)
    array([5, 5, 5, 5, 1])
    >>> # Count unique values along columns (within rows)
    >>> librosa.util.count_unique(x, axis=-1)
    array([2, 1, 5, 5, 5])
    )r,   apply_along_axisr   rM   r&   r5   r5   r6   r#     s    &c                 C   s   t | }|jd | jkS )zDetermines if the input array has all unique values.

    This function is a helper for `is_unique` and is not
    to be called directly.
    r   )r,   r\   r+   rN   r   r5   r5   r6   __is_unique  s    
r   c                C   s   t t|| S )a  Determine if the input array consists of all unique values
    along a given axis.

    Parameters
    ----------
    data : np.ndarray
        The input array
    axis : int
        The target axis

    Returns
    -------
    is_unique
        Array of booleans indicating whether the data is unique along the chosen
        axis.
        This array will have one fewer dimension than the input.

    See Also
    --------
    count_unique

    Examples
    --------
    >>> x = np.vander(np.arange(5))
    >>> x
    array([[  0,   0,   0,   0,   1],
       [  1,   1,   1,   1,   1],
       [ 16,   8,   4,   2,   1],
       [ 81,  27,   9,   3,   1],
       [256,  64,  16,   4,   1]])
    >>> # Check uniqueness along rows
    >>> librosa.util.is_unique(x, axis=0)
    array([ True,  True,  True,  True, False])
    >>> # Check uniqueness along columns
    >>> librosa.util.is_unique(x, axis=-1)
    array([False, False,  True,  True,  True])

    )r,   r   r   r   r5   r5   r6   r$     s    ))6__doc__Zscipy.ndimager   Zscipy.sparseZnumpyr,   ZnumbaZnumpy.lib.stride_tricksr   _cacher   
exceptionsr   deprecationr   Z
decoratorsr   r	   __all__r
   r   r   r   r   r   r   r   r   rm   r   r   r   r   r   r   r   r   r   r   r   r   r    Zjitr   r   r   r   r   r!   r"   r   r#   r   r$   r5   r5   r5   r6   <module>   s     !T!I
F:Q_ d<=
 b4{rDD?3g8;

(
