U
    2d(                     @   s  d Z ddlZddlZddlmZ ddlZddlZddlZddlZ	ddl
mZ ddlmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm Z  ddddZ!G dd dZ"G dd dZ#G dd dZ$G dd dZ%G d d! d!Z&G d"d# d#eZ'G d$d% d%Z(G d&d' d'Z)G d(d) d)Z*G d*d+ d+Z+G d,d- d-Z,G d.d/ d/Z-G d0d1 d1Z.d2d3 Z/d4d5 Z0d6d7 Z1dS )8z Base classes for all estimators.    N)defaultdict   )__version__)
get_config)	_IS_32BIT)_SetOutputMixin_DEFAULT_TAGS)	check_X_ycheck_array)_check_y)_num_features_check_feature_names_in)_generate_get_feature_names_out)check_is_fitted)_get_feature_namesestimator_html_repr)validate_parameter_constraintsTsafec                   s  t | }|ttttfkr.| fdd| D S t| drBt| t r| sPt| S t| t rdt	dnt	dt
| t | f | j}| jdd}| D ]\}}t|dd||< q|f |}|jdd}|D ],}|| }	|| }
|	|
k	rtd	| |f qt| d
rt| j|_|S )ar  Construct a new unfitted estimator with the same parameters.

    Clone does a deep copy of the model in an estimator
    without actually copying attached data. It returns a new estimator
    with the same parameters that has not been fitted on any data.

    Parameters
    ----------
    estimator : {list, tuple, set} of estimator instance or a single             estimator instance
        The estimator or group of estimators to be cloned.
    safe : bool, default=True
        If safe is False, clone will fall back to a deep copy on objects
        that are not estimators.

    Returns
    -------
    estimator : object
        The deep copy of the input, an estimator if input is an estimator.

    Notes
    -----
    If the estimator's `random_state` parameter is an integer (or if the
    estimator doesn't have a `random_state` parameter), an *exact clone* is
    returned: the clone and the original estimator will give the exact same
    results. Otherwise, *statistical clone* is returned: the clone might
    return different results from the original estimator. More details can be
    found in :ref:`randomness`.
    c                    s   g | ]}t | d qS )r   )clone).0er    0/tmp/pip-unpacked-wheel-zrfo1fqw/sklearn/base.py
<listcomp>C   s     zclone.<locals>.<listcomp>
get_paramszaCannot clone object. You should provide an instance of scikit-learn estimator instead of a class.zCannot clone object '%s' (type %s): it does not seem to be a scikit-learn estimator as it does not implement a 'get_params' method.Fdeepr   zWCannot clone object %s, as the constructor either does not set or modifies parameter %s_sklearn_output_config)typelisttupleset	frozensethasattr
isinstancecopydeepcopy	TypeErrorrepr	__class__r   itemsr   RuntimeErrorr"   )	estimatorr   Zestimator_typeklassZnew_object_paramsnameparamZ
new_objectZ
params_setZparam1Zparam2r   r   r   r   "   sF    


r   c                       s   e Zd ZdZedd Zd$ddZdd Zd%d
dZ fddZ	 fddZ
dd Zdd Zdd Zdd Zd&ddZdd Zedd Zd d! Zd"d# Z  ZS )'BaseEstimatorzBase class for all estimators in scikit-learn.

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    c                 C   st   t | jd| j}|tjkrg S t|}dd |j D }|D ] }|j|jkr@t	d| |f q@t
dd |D S )z%Get parameter names for the estimatorZdeprecated_originalc                 S   s&   g | ]}|j d kr|j|jkr|qS self)r3   kindVAR_KEYWORDr   pr   r   r   r      s   
 z2BaseEstimator._get_param_names.<locals>.<listcomp>zscikit-learn estimators should always specify their parameters in the signature of their __init__ (no varargs). %s with constructor %s doesn't  follow this convention.c                 S   s   g | ]
}|j qS r   )r3   r:   r   r   r   r      s     )getattr__init__objectinspect	signature
parametersvaluesr8   VAR_POSITIONALr0   sorted)clsinitZinit_signaturerA   r;   r   r   r   _get_param_namesz   s    

zBaseEstimator._get_param_namesTc                    sf   t  }|  D ]R t|  }|rXt|drXt|tsX|  }| fdd|D  || < q|S )ae  
        Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        r   c                 3   s"   | ]\}} d  | |fV  qdS )__Nr   )r   kvalkeyr   r   	<genexpr>   s     z+BaseEstimator.get_params.<locals>.<genexpr>)	dictrG   r<   r(   r)   r#   r   r/   update)r7   r!   outvalueZ
deep_itemsr   rK   r   r      s    

zBaseEstimator.get_paramsc           
   	   K   s   |s| S | j dd}tt}| D ]j\}}|d\}}}||krh|  }td|d|  d|d|rz||| |< q$t| || |||< q$| D ]\}}	|| jf |	 q| S )a  Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as :class:`~sklearn.pipeline.Pipeline`). The latter have
        parameters of the form ``<component>__<parameter>`` so that it's
        possible to update each component of a nested object.

        Parameters
        ----------
        **params : dict
            Estimator parameters.

        Returns
        -------
        self : estimator instance
            Estimator instance.
        Tr    rH   zInvalid parameter z for estimator z. Valid parameters are: .)	r   r   rN   r/   	partitionrG   
ValueErrorsetattr
set_params)
r7   paramsZvalid_paramsZnested_paramsrL   rQ   delimZsub_keyZlocal_valid_paramsZ
sub_paramsr   r   r   rV      s$    
zBaseEstimator.set_params  c                 C   s   ddl m} d}|ddd|d}|| }td| }||kr|d }d| }t|| }	t||d d d	  }
d
||	|
  kr|d7 }t||d d d	  }
d}|	t| t||
 k r|d |	 d ||
 d   }|S )Nr   )_EstimatorPrettyPrinter   T)compactindentZindent_at_nameZn_max_elements_to_show    z^(\s*\S){%d}
z[^\n]*\nz...)	Zutils._pprintrZ   pformatlenjoinsplitrematchend)r7   Z
N_CHAR_MAXrZ   ZN_MAX_ELEMENTS_TO_SHOWpprepr_Z
n_nonblankZlimregexZleft_limZ	right_limZellipsisr   r   r   __repr__   s,    
	zBaseEstimator.__repr__c                    s|   t | dd rtdz t  }|d kr2| j }W n tk
rR   | j }Y nX t| j	drtt
| tdS |S d S )N	__slots__zSYou cannot use `__slots__` in objects inheriting from `sklearn.base.BaseEstimator`.sklearn.)_sklearn_version)r<   r,   super__getstate____dict__r*   AttributeErrorr#   
__module__
startswithrN   r/   r   )r7   stater.   r   r   rq     s    
zBaseEstimator.__getstate__c                    st   t | jdr>|dd}|tkr>td| jj	|tt
 zt | W n  tk
rn   | j| Y nX d S )Nrn   ro   zpre-0.18a  Trying to unpickle estimator {0} from version {1} when using version {2}. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations)r#   rt   ru   popr   warningswarnformatr.   __name__UserWarningrp   __setstate__rs   rr   rO   )r7   rv   Zpickle_versionrw   r   r   r~   '  s      zBaseEstimator.__setstate__c                 C   s   t S Nr   r6   r   r   r   
_more_tags;  s    zBaseEstimator._more_tagsc                 C   s<   i }t t| jD ]"}t|dr|| }|| q|S )Nr   )reversedr?   getmror.   r(   r   rO   )r7   Zcollected_tagsZ
base_classZ	more_tagsr   r   r   	_get_tags>  s    

zBaseEstimator._get_tagsc              
   C   s   zt |}W nT tk
r` } z6|sJt| drJtd| jj d| j d|W Y dS d}~X Y nX |rp|| _dS t| ds~dS || jkrtd| d| jj d| j ddS )	a  Set the `n_features_in_` attribute, or check against it.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            The input samples.
        reset : bool
            If True, the `n_features_in_` attribute is set to `X.shape[1]`.
            If False and the attribute exists, then check that it is equal to
            `X.shape[1]`. If False and the attribute does *not* exist, then
            the check is skipped.
            .. note::
               It is recommended to call reset=True in `fit` and in the first
               call to `partial_fit`. All other methods that validate `X`
               should set `reset=False`.
        n_features_in_z%X does not contain any features, but z is expecting z	 featuresNzX has z features, but z features as input.)r   r,   r(   rT   r.   r|   r   )r7   XresetZ
n_featuresr   r   r   r   _check_n_featuresI  s&    

zBaseEstimator._check_n_featuresc                C   sX  |r4t |}|dk	r|| _nt| dr0t| d dS t| dd}t |}|dkr\|dkr\dS |dk	r|dkrtd| jj d dS |dkr|dk	rtd| jj d dS t	|t	|kst
||krTd}t|}t|}t|| }	t|| }
dd	 }|	r|d
7 }|||	7 }|
r8|d7 }|||
7 }|
sL|	sL|d7 }t|dS )a  Set or check the `feature_names_in_` attribute.

        .. versionadded:: 1.0

        Parameters
        ----------
        X : {ndarray, dataframe} of shape (n_samples, n_features)
            The input samples.

        reset : bool
            Whether to reset the `feature_names_in_` attribute.
            If False, the input will be checked for consistency with
            feature names of data provided when reset was last True.
            .. note::
               It is recommended to call `reset=True` in `fit` and in the first
               call to `partial_fit`. All other methods that validate `X`
               should set `reset=False`.
        Nfeature_names_in_zX has feature names, but z! was fitted without feature namesz)X does not have valid feature names, but z was fitted with feature nameszBThe feature names should match those that were passed during fit.
c                 S   sB   d}d}t | D ],\}}||kr,|d7 } q>|d| d7 }q|S )Nr^      z- ...
z- ra   )	enumerate)namesoutputZmax_n_namesir3   r   r   r   	add_names  s    z5BaseEstimator._check_feature_names.<locals>.add_namesz"Feature names unseen at fit time:
z1Feature names seen at fit time, yet now missing:
z=Feature names must be in the same order as they were in fit.
)r   r   r(   delattrr<   ry   rz   r.   r|   rc   npanyr&   rD   rT   )r7   r   r   Zfeature_names_inZfitted_feature_namesZX_feature_namesmessageZfitted_feature_names_setZX_feature_names_setZunexpected_namesZmissing_namesr   r   r   r   _check_feature_namesw  sT    


z"BaseEstimator._check_feature_namesno_validationFc                 K   sZ  | j ||d |dkr6|  d r6td| jj dt|toF|dk}|dkp`t|to`|dk}d| i}||}|r|rtdn|s|rt|fd	d
i|}|}	n|r|st|f|}|}	nt|r|\}
}d|
kr||
}
t|fd	d
i|
}d|kr||}t|fd	di|}nt	||f|\}}||f}	|sV|
ddrV| j||d |	S )a}
  Validate input data and set or check the `n_features_in_` attribute.

        Parameters
        ----------
        X : {array-like, sparse matrix, dataframe} of shape                 (n_samples, n_features), default='no validation'
            The input samples.
            If `'no_validation'`, no validation is performed on `X`. This is
            useful for meta-estimator which can delegate input validation to
            their underlying estimator(s). In that case `y` must be passed and
            the only accepted `check_params` are `multi_output` and
            `y_numeric`.

        y : array-like of shape (n_samples,), default='no_validation'
            The targets.

            - If `None`, `check_array` is called on `X`. If the estimator's
              requires_y tag is True, then an error will be raised.
            - If `'no_validation'`, `check_array` is called on `X` and the
              estimator's requires_y tag is ignored. This is a default
              placeholder and is never meant to be explicitly set. In that case
              `X` must be passed.
            - Otherwise, only `y` with `_check_y` or both `X` and `y` are
              checked with either `check_array` or `check_X_y` depending on
              `validate_separately`.

        reset : bool, default=True
            Whether to reset the `n_features_in_` attribute.
            If False, the input will be checked for consistency with data
            provided when reset was last True.
            .. note::
               It is recommended to call reset=True in `fit` and in the first
               call to `partial_fit`. All other methods that validate `X`
               should set `reset=False`.

        validate_separately : False or tuple of dicts, default=False
            Only used if y is not None.
            If False, call validate_X_y(). Else, it must be a tuple of kwargs
            to be used for calling check_array() on X and y respectively.

            `estimator=self` is automatically added to these dicts to generate
            more informative error message in case of invalid input data.

        **check_params : kwargs
            Parameters passed to :func:`sklearn.utils.check_array` or
            :func:`sklearn.utils.check_X_y`. Ignored if validate_separately
            is not False.

            `estimator=self` is automatically added to these params to generate
            more informative error message in case of invalid input data.

        Returns
        -------
        out : {ndarray, sparse matrix} or tuple of these
            The validated input. A tuple is returned if both `X` and `y` are
            validated.
        )r   N
requires_yzThis z= estimator requires y to be passed, but the target y is None.r   r1   z*Validation should be done on X, y or both.Z
input_namer   yZ	ensure_2dT)r   r   rT   r.   r|   r)   strr   r   r
   getr   )r7   r   r   r   Zvalidate_separatelyZcheck_paramsZno_val_XZno_val_yZdefault_check_paramsrP   Zcheck_X_paramsZcheck_y_paramsr   r   r   _validate_data  s<    A

zBaseEstimator._validate_datac                 C   s    t | j| jdd| jjd dS )aY  Validate types and values of constructor parameters

        The expected type and values must be defined in the `_parameter_constraints`
        class attribute, which is a dictionary `param_name: list of constraints`. See
        the docstring of `validate_parameter_constraints` for a description of the
        accepted constraints.
        Fr    )Zcaller_nameN)r   Z_parameter_constraintsr   r.   r|   r6   r   r   r   _validate_params=  s
    
zBaseEstimator._validate_paramsc                 C   s   t  d dkrtd| jS )a  HTML representation of estimator.

        This is redundant with the logic of `_repr_mimebundle_`. The latter
        should be favorted in the long term, `_repr_html_` is only
        implemented for consumers who do not interpret `_repr_mimbundle_`.
        displaydiagramzW_repr_html_ is only defined when the 'display' configuration option is set to 'diagram')r   rs   _repr_html_innerr6   r   r   r   _repr_html_K  s
    zBaseEstimator._repr_html_c                 C   s   t | S )zThis function is returned by the @property `_repr_html_` to make
        `hasattr(estimator, "_repr_html_") return `True` or `False` depending
        on `get_config()["display"]`.
        r   r6   r   r   r   r   [  s    zBaseEstimator._repr_html_innerc                 K   s*   dt | i}t d dkr&t| |d< |S )z8Mime bundle used by jupyter kernels to display estimatorz
text/plainr   r   z	text/html)r-   r   r   )r7   kwargsr   r   r   r   _repr_mimebundle_b  s    zBaseEstimator._repr_mimebundle_)T)rY   )r   r   TF)r|   rt   __qualname____doc__classmethodrG   r   rV   rl   rq   r~   r   r   r   r   r   r   propertyr   r   r   __classcell__r   r   rw   r   r5   p   s,   	

,
4.[    
m
r5   c                   @   s&   e Zd ZdZdZdddZdd ZdS )	ClassifierMixinz0Mixin class for all classifiers in scikit-learn.
classifierNc                 C   s    ddl m} ||| ||dS )a  
        Return the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True labels for `X`.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of ``self.predict(X)`` wrt. `y`.
        r   )accuracy_scoresample_weight)metricsr   predict)r7   r   r   r   r   r   r   r   scoreo  s    zClassifierMixin.scorec                 C   s   ddiS Nr   Tr   r6   r   r   r   r     s    zClassifierMixin._more_tags)Nr|   rt   r   r   _estimator_typer   r   r   r   r   r   r   j  s   
r   c                   @   s&   e Zd ZdZdZdddZdd ZdS )	RegressorMixinz:Mixin class for all regression estimators in scikit-learn.	regressorNc                 C   s$   ddl m} | |}||||dS )a  Return the coefficient of determination of the prediction.

        The coefficient of determination :math:`R^2` is defined as
        :math:`(1 - \frac{u}{v})`, where :math:`u` is the residual
        sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v`
        is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``.
        The best possible score is 1.0 and it can be negative (because the
        model can be arbitrarily worse). A constant model that always predicts
        the expected value of `y`, disregarding the input features, would get
        a :math:`R^2` score of 0.0.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples. For some estimators this may be a precomputed
            kernel matrix or a list of generic objects instead with shape
            ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted``
            is the number of samples used in the fitting for the estimator.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True values for `X`.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            :math:`R^2` of ``self.predict(X)`` wrt. `y`.

        Notes
        -----
        The :math:`R^2` score used when calling ``score`` on a regressor uses
        ``multioutput='uniform_average'`` from version 0.23 to keep consistent
        with default value of :func:`~sklearn.metrics.r2_score`.
        This influences the ``score`` method of all the multioutput
        regressors (except for
        :class:`~sklearn.multioutput.MultiOutputRegressor`).
        r   )r2_scorer   )r   r   r   )r7   r   r   r   r   Zy_predr   r   r   r     s    )
zRegressorMixin.scorec                 C   s   ddiS r   r   r6   r   r   r   r     s    zRegressorMixin._more_tags)Nr   r   r   r   r   r     s   
.r   c                   @   s&   e Zd ZdZdZdddZdd ZdS )	ClusterMixinz7Mixin class for all cluster estimators in scikit-learn.Z	clustererNc                 C   s   |  | | jS )a  
        Perform clustering on `X` and returns cluster labels.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        labels : ndarray of shape (n_samples,), dtype=np.int64
            Cluster labels.
        )fitZlabels_r7   r   r   r   r   r   fit_predict  s    
zClusterMixin.fit_predictc                 C   s   dg iS )NZpreserves_dtyper   r6   r   r   r   r     s    zClusterMixin._more_tags)N)r|   rt   r   r   r   r   r   r   r   r   r   r     s   
r   c                   @   s4   e Zd ZdZedd Zdd Zdd Zdd	 Zd
S )BiclusterMixinz9Mixin class for all bicluster estimators in scikit-learn.c                 C   s   | j | jfS )z{Convenient way to get row and column indicators together.

        Returns the ``rows_`` and ``columns_`` members.
        )rows_columns_r6   r   r   r   biclusters_  s    zBiclusterMixin.biclusters_c                 C   s0   | j | }| j| }t|d t|d fS )a  Row and column indices of the `i`'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        row_ind : ndarray, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : ndarray, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.
        r   )r   r   r   Znonzero)r7   r   Zrowscolumnsr   r   r   get_indices  s    

zBiclusterMixin.get_indicesc                 C   s   |  |}tdd |D S )a-  Shape of the `i`'th bicluster.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        n_rows : int
            Number of rows in the bicluster.

        n_cols : int
            Number of columns in the bicluster.
        c                 s   s   | ]}t |V  qd S r   )rc   )r   r   r   r   r   rM     s     z+BiclusterMixin.get_shape.<locals>.<genexpr>)r   r%   )r7   r   indicesr   r   r   	get_shape  s    
zBiclusterMixin.get_shapec                 C   s@   ddl m} ||dd}| |\}}||ddtjf |f S )a   Return the submatrix corresponding to bicluster `i`.

        Parameters
        ----------
        i : int
            The index of the cluster.
        data : array-like of shape (n_samples, n_features)
            The data.

        Returns
        -------
        submatrix : ndarray of shape (n_rows, n_cols)
            The submatrix corresponding to bicluster `i`.

        Notes
        -----
        Works with sparse matrices. Only works if ``rows_`` and
        ``columns_`` attributes exist.
        r   r   Zcsr)Zaccept_sparseN)utils.validationr   r   r   Znewaxis)r7   r   datar   Zrow_indZcol_indr   r   r   get_submatrix  s    zBiclusterMixin.get_submatrixN)	r|   rt   r   r   r   r   r   r   r   r   r   r   r   r     s   
r   c                   @   s   e Zd ZdZdddZdS )TransformerMixina  Mixin class for all transformers in scikit-learn.

    If :term:`get_feature_names_out` is defined, then `BaseEstimator` will
    automatically wrap `transform` and `fit_transform` to follow the `set_output`
    API. See the :ref:`developer_api_set_output` for details.

    :class:`base.OneToOneFeatureMixin` and
    :class:`base.ClassNamePrefixFeaturesOutMixin` are helpful mixins for
    defining :term:`get_feature_names_out`.
    Nc                 K   s6   |dkr| j |f||S | j ||f||S dS )a  
        Fit to data, then transform it.

        Fits transformer to `X` and `y` with optional parameters `fit_params`
        and returns a transformed version of `X`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input samples.

        y :  array-like of shape (n_samples,) or (n_samples, n_outputs),                 default=None
            Target values (None for unsupervised transformations).

        **fit_params : dict
            Additional fit parameters.

        Returns
        -------
        X_new : ndarray array of shape (n_samples, n_features_new)
            Transformed array.
        N)r   Z	transform)r7   r   r   Z
fit_paramsr   r   r   fit_transform?  s    zTransformerMixin.fit_transform)N)r|   rt   r   r   r   r   r   r   r   r   3  s   r   c                   @   s   e Zd ZdZdddZdS )OneToOneFeatureMixinzProvides `get_feature_names_out` for simple transformers.

    This mixin assumes there's a 1-to-1 correspondence between input features
    and output features, such as :class:`~preprocessing.StandardScaler`.
    Nc                 C   s
   t | |S )a  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then the following input feature names are generated:
              `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Same as input features.
        r   r7   input_featuresr   r   r   get_feature_names_outh  s    z*OneToOneFeatureMixin.get_feature_names_out)Nr|   rt   r   r   r   r   r   r   r   r   a  s   r   c                   @   s   e Zd ZdZdddZdS )ClassNamePrefixFeaturesOutMixinaE  Mixin class for transformers that generate their own names by prefixing.

    This mixin is useful when the transformer needs to generate its own feature
    names out, such as :class:`~decomposition.PCA`. For example, if
    :class:`~decomposition.PCA` outputs 3 features, then the generated feature
    names out are: `["pca0", "pca1", "pca2"]`.

    This mixin assumes that a `_n_features_out` attribute is defined when the
    transformer is fitted. `_n_features_out` is the number of output features
    that the transformer will return in `transform` of `fit_transform`.
    Nc                 C   s   t | d t| | j|dS )aL  Get output feature names for transformation.

        The feature names out will prefixed by the lowercased class name. For
        example, if the transformer outputs 3 features, then the feature names
        out are: `["class_name0", "class_name1", "class_name2"]`.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Only used to validate feature names with the names seen in :meth:`fit`.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        _n_features_out)r   )r   r   r   r   r   r   r   r     s    
  z5ClassNamePrefixFeaturesOutMixin.get_feature_names_out)Nr   r   r   r   r   r     s   r   c                   @   s   e Zd ZdZdZdddZdS )DensityMixinz7Mixin class for all density estimators in scikit-learn.ZDensityEstimatorNc                 C   s   dS )a=  Return the score of the model on the data `X`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        score : float
        Nr   r   r   r   r   r     s    zDensityMixin.score)N)r|   rt   r   r   r   r   r   r   r   r   r     s   r   c                   @   s   e Zd ZdZdZdddZdS )OutlierMixinzAMixin class for all outlier detection estimators in scikit-learn.outlier_detectorNc                 C   s   |  ||S )a  Perform fit on X and returns labels for X.

        Returns -1 for outliers and 1 for inliers.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            1 for inliers, -1 for outliers.
        )r   r   r   r   r   r   r     s    zOutlierMixin.fit_predict)N)r|   rt   r   r   r   r   r   r   r   r   r     s   r   c                   @   s   e Zd ZdgZdS )MetaEstimatorMixinr1   N)r|   rt   r   Z_required_parametersr   r   r   r   r     s   r   c                   @   s   e Zd ZdZdd ZdS )MultiOutputMixinz2Mixin to mark estimators that support multioutput.c                 C   s   ddiS )NZmultioutputTr   r6   r   r   r   r     s    zMultiOutputMixin._more_tagsNr|   rt   r   r   r   r   r   r   r   r     s   r   c                   @   s   e Zd ZdZdd ZdS )_UnstableArchMixinz=Mark estimators that are non-determinstic on 32bit or PowerPCc                 C   s   dt pt diS )NZnon_deterministic)ppcZpowerpc)r   platformmachineru   r6   r   r   r   r     s    z_UnstableArchMixin._more_tagsNr   r   r   r   r   r     s   r   c                 C   s   t | dddkS )a  Return True if the given estimator is (probably) a classifier.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a classifier and False otherwise.
    r   Nr   r<   r1   r   r   r   is_classifier  s    r   c                 C   s   t | dddkS )a  Return True if the given estimator is (probably) a regressor.

    Parameters
    ----------
    estimator : estimator instance
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a regressor and False otherwise.
    r   Nr   r   r   r   r   r   is_regressor  s    r   c                 C   s   t | dddkS )a  Return True if the given estimator is (probably) an outlier detector.

    Parameters
    ----------
    estimator : estimator instance
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is an outlier detector and False otherwise.
    r   Nr   r   r   r   r   r   is_outlier_detector  s    r   )2r   r*   ry   collectionsr   r   r?   rf   Znumpyr   r^   r   _configr   utilsr   Zutils._set_outputr   Zutils._tagsr	   r   r
   r   r   r   r   r   r   r   Zutils._estimator_html_reprr   Zutils._param_validationr   r   r5   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   sT   N   }%7N.$