U
    3dY                     @   s4  d Z ddlmZ ddlZddlmZ ddlmZ ddl	m
Z
mZ dd	lmZmZ dd
lmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlmZ ddlm Z  ddl!m"Z" ddl#m$Z$ dgZ%dd Z&dd Z'dd Z(dddd d!dd"d#d$dZ)dS )%zBPartial dependence plots for regression and classification models.    )IterableN)sparse)
mquantiles   )_check_feature_names_get_feature_index   )is_classifieris_regressor)	cartesian)check_array)check_matplotlib_support)_safe_indexing)_safe_assign)_determine_key_type)_get_column_indices)check_is_fitted)Bunch)DecisionTreeRegressor)RandomForestRegressor)NotFittedError)BaseGradientBoosting)BaseHistGradientBoostingpartial_dependencec           
      C   s  t |trt|dkrtdtdd |D s8td|d |d krPtd|dkr`td	g }t|D ]\}}tt| |dd
}|s|j	d |k r|}nNt
t| |dd
|dd}	t|	d |	d rtdtj|	d |	d |dd}|| qlt||fS )a   Generate a grid of points based on the percentiles of X.

    The grid is a cartesian product between the columns of ``values``. The
    ith column of ``values`` consists in ``grid_resolution`` equally-spaced
    points between the percentiles of the jth column of X.

    If ``grid_resolution`` is bigger than the number of unique values in the
    j-th column of X or if the feature is a categorical feature (by inspecting
    `is_categorical`) , then those unique values will be used instead.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_target_features)
        The data.

    percentiles : tuple of float
        The percentiles which are used to construct the extreme values of
        the grid. Must be in [0, 1].

    is_categorical : list of bool
        For each feature, tells whether it is categorical or not. If a feature
        is categorical, then the values used will be the unique ones
        (i.e. categories) instead of the percentiles.

    grid_resolution : int
        The number of equally spaced points to be placed on the grid for each
        feature.

    Returns
    -------
    grid : ndarray of shape (n_points, n_target_features)
        A value for each feature at each point in the grid. ``n_points`` is
        always ``<= grid_resolution ** X.shape[1]``.

    values : list of 1d ndarrays
        The values with which the grid has been created. The size of each
        array ``values[j]`` is either ``grid_resolution``, or the number of
        unique values in ``X[:, j]``, whichever is smaller.
    r   z/'percentiles' must be a sequence of 2 elements.c                 s   s&   | ]}d |  kodkn  V  qdS )r   r   N ).0xr   r   J/tmp/pip-unpacked-wheel-zrfo1fqw/sklearn/inspection/_partial_dependence.py	<genexpr>Q   s     z_grid_from_X.<locals>.<genexpr>z''percentiles' values must be in [0, 1].r   r   z9percentiles[0] must be strictly less than percentiles[1].z2'grid_resolution' must be strictly greater than 1.axis)Zprobr    ztpercentiles are too close to each other, unable to build the grid. Please choose percentiles that are further apart.T)numZendpoint)
isinstancer   len
ValueErrorall	enumeratenpuniquer   shaper   ZallcloseZlinspaceappendr   )
Xpercentilesis_categoricalgrid_resolutionvaluesZfeatureZis_catZuniquesr    Zemp_percentilesr   r   r   _grid_from_X'   s<    (  r0   c                 C   s&   |  ||}|jdkr"|dd}|S )Nr   )Z%_compute_partial_dependence_recursionndimreshape)estgridfeaturesaveraged_predictionsr   r   r   _partial_dependence_recursionw   s    
r8   c                 C   s  g }g }t | r| j}nnt| dd }t| dd }	|dkrB|p>|	}n|dkrN|n|	}|d kr|dkrltdn|dkr~tdntd| }
|D ]}t|D ]\}}t|
|| |d qz*||
}|| |tj	|dd	 W q t
k
r } ztd
|W 5 d }~X Y qX q|jd }t|j}t | rP|jdkrP||d}n.t| r~|jd dkr~|d }||d}t|j}t | r|jdkr|dd}n.t| r|jd dkr|d }|dd}||fS )Npredict_probadecision_functionautozCThe estimator has no predict_proba and no decision_function method.z*The estimator has no predict_proba method.z.The estimator has no decision_function method.)Zcolumn_indexerr   r   z0'estimator' parameter must be a fitted estimatorr   r1   r   )r
   Zpredictgetattrr$   copyr&   r   r*   r'   Zmeanr   r)   arrayTr2   r3   r	   )r4   r5   r6   r+   response_methodpredictionsr7   Zprediction_methodr9   r:   ZX_evalZ
new_valuesivariablepredeZ	n_samplesr   r   r   _partial_dependence_brute   sX    



rF   r;   )g?gffffff?d   average)categorical_featuresfeature_namesr@   r,   r.   methodkindc                   s^  t |  t| s t| s tdt| rBt| jd tjrBtdt|dsdt	
|sdt|dtd}d}
||
krtd|d	|
t| r|d
krtdd}||krtd|d	||	dkr|dkrtdd}|d
kr t| tr| jdkrd}nt| tttfrd}nd}|dkr|t| ttttfsVd}tdd	||d
krdd}|dkr|td|t|dddkrtt|drtd|jd d tjt||tjdd }t||jd } dkrdgt| }ntj dd  jj dkrX j!|krDtd  j! d!| d" fd#d$|D }nF jj d%krfd&d$ D fd'd$|D }ntd( j d)t"t#||dd*|||\}}|dkrt$| ||||\}}|j%d+|jd fd,d$ |D  }nt&| ||}|j%d2d-d$ |D  }|	dkr6t'||d.S |	d/krLt'||d0S t'|||d1S dS )3a  Partial dependence of ``features``.

    Partial dependence of a feature (or a set of features) corresponds to
    the average response of an estimator for each possible value of the
    feature.

    Read more in the :ref:`User Guide <partial_dependence>`.

    .. warning::

        For :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, the
        `'recursion'` method (used by default) will not account for the `init`
        predictor of the boosting process. In practice, this will produce
        the same values as `'brute'` up to a constant offset in the target
        response, provided that `init` is a constant estimator (which is the
        default). However, if `init` is not a constant estimator, the
        partial dependence values are incorrect for `'recursion'` because the
        offset will be sample-dependent. It is preferable to use the `'brute'`
        method. Note that this only applies to
        :class:`~sklearn.ensemble.GradientBoostingClassifier` and
        :class:`~sklearn.ensemble.GradientBoostingRegressor`, not to
        :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
        :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.

    Parameters
    ----------
    estimator : BaseEstimator
        A fitted estimator object implementing :term:`predict`,
        :term:`predict_proba`, or :term:`decision_function`.
        Multioutput-multiclass classifiers are not supported.

    X : {array-like or dataframe} of shape (n_samples, n_features)
        ``X`` is used to generate a grid of values for the target
        ``features`` (where the partial dependence will be evaluated), and
        also to generate values for the complement features when the
        `method` is 'brute'.

    features : array-like of {int, str}
        The feature (e.g. `[0]`) or pair of interacting features
        (e.g. `[(0, 1)]`) for which the partial dependency should be computed.

    categorical_features : array-like of shape (n_features,) or shape             (n_categorical_features,), dtype={bool, int, str}, default=None
        Indicates the categorical features.

        - `None`: no feature will be considered categorical;
        - boolean array-like: boolean mask of shape `(n_features,)`
            indicating which features are categorical. Thus, this array has
            the same shape has `X.shape[1]`;
        - integer or string array-like: integer indices or strings
            indicating categorical features.

        .. versionadded:: 1.2

    feature_names : array-like of shape (n_features,), dtype=str, default=None
        Name of each feature; `feature_names[i]` holds the name of the feature
        with index `i`.
        By default, the name of the feature corresponds to their numerical
        index for NumPy array and their column name for pandas dataframe.

        .. versionadded:: 1.2

    response_method : {'auto', 'predict_proba', 'decision_function'},             default='auto'
        Specifies whether to use :term:`predict_proba` or
        :term:`decision_function` as the target response. For regressors
        this parameter is ignored and the response is always the output of
        :term:`predict`. By default, :term:`predict_proba` is tried first
        and we revert to :term:`decision_function` if it doesn't exist. If
        ``method`` is 'recursion', the response is always the output of
        :term:`decision_function`.

    percentiles : tuple of float, default=(0.05, 0.95)
        The lower and upper percentile used to create the extreme values
        for the grid. Must be in [0, 1].

    grid_resolution : int, default=100
        The number of equally spaced points on the grid, for each target
        feature.

    method : {'auto', 'recursion', 'brute'}, default='auto'
        The method used to calculate the averaged predictions:

        - `'recursion'` is only supported for some tree-based estimators
          (namely
          :class:`~sklearn.ensemble.GradientBoostingClassifier`,
          :class:`~sklearn.ensemble.GradientBoostingRegressor`,
          :class:`~sklearn.ensemble.HistGradientBoostingClassifier`,
          :class:`~sklearn.ensemble.HistGradientBoostingRegressor`,
          :class:`~sklearn.tree.DecisionTreeRegressor`,
          :class:`~sklearn.ensemble.RandomForestRegressor`,
          ) when `kind='average'`.
          This is more efficient in terms of speed.
          With this method, the target response of a
          classifier is always the decision function, not the predicted
          probabilities. Since the `'recursion'` method implicitly computes
          the average of the Individual Conditional Expectation (ICE) by
          design, it is not compatible with ICE and thus `kind` must be
          `'average'`.

        - `'brute'` is supported for any estimator, but is more
          computationally intensive.

        - `'auto'`: the `'recursion'` is used for estimators that support it,
          and `'brute'` is used otherwise.

        Please see :ref:`this note <pdp_method_differences>` for
        differences between the `'brute'` and `'recursion'` method.

    kind : {'average', 'individual', 'both'}, default='average'
        Whether to return the partial dependence averaged across all the
        samples in the dataset or one value per sample or both.
        See Returns below.

        Note that the fast `method='recursion'` option is only available for
        `kind='average'`. Computing individual dependencies requires using the
        slower `method='brute'` option.

        .. versionadded:: 0.24

    Returns
    -------
    predictions : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        individual : ndarray of shape (n_outputs, n_instances,                 len(values[0]), len(values[1]), ...)
            The predictions for all the points in the grid for all
            samples in X. This is also known as Individual
            Conditional Expectation (ICE)

        average : ndarray of shape (n_outputs, len(values[0]),                 len(values[1]), ...)
            The predictions for all the points in the grid, averaged
            over all samples in X (or over the training data if
            ``method`` is 'recursion').
            Only available when ``kind='both'``.

        values : seq of 1d ndarrays
            The values with which the grid has been created. The generated
            grid is a cartesian product of the arrays in ``values``.
            ``len(values) == len(features)``. The size of each array
            ``values[j]`` is either ``grid_resolution``, or the number of
            unique values in ``X[:, j]``, whichever is smaller.

        ``n_outputs`` corresponds to the number of classes in a multi-class
        setting, or to the number of tasks for multi-output regression.
        For classical regression and binary classification ``n_outputs==1``.
        ``n_values_feature_j`` corresponds to the size ``values[j]``.

    See Also
    --------
    PartialDependenceDisplay.from_estimator : Plot Partial Dependence.
    PartialDependenceDisplay : Partial Dependence visualization.

    Examples
    --------
    >>> X = [[0, 0, 2], [1, 0, 0]]
    >>> y = [0, 1]
    >>> from sklearn.ensemble import GradientBoostingClassifier
    >>> gb = GradientBoostingClassifier(random_state=0).fit(X, y)
    >>> partial_dependence(gb, features=[0], X=X, percentiles=(0, 1),
    ...                    grid_resolution=2) # doctest: +SKIP
    (array([[-4.52...,  4.52...]]), [array([ 0.,  1.])])
    z5'estimator' must be a fitted regressor or classifier.r   z3Multiclass-multioutput estimators are not supportedZ	__array__z	allow-nan)Zforce_all_finitedtype)r;   r9   r:   zEresponse_method {} is invalid. Accepted response_method names are {}.z, r;   zKThe response_method parameter is ignored for regressors and must be 'auto'.)brute	recursionr;   z3method {} is invalid. Accepted method names are {}.rH   rO   zCThe 'recursion' method only applies when 'kind' is set to 'average'rN   N)ZGradientBoostingClassifierZGradientBoostingRegressorZHistGradientBoostingClassifierHistGradientBoostingRegressorrP   r   r   z[Only the following estimators support the 'recursion' method: {}. Try using method='brute'.r:   zUWith the 'recursion' method, the response_method must be 'decision_function'. Got {}.F)Zaccept_sliceintzall features must be in [0, {}]r   C)rM   order)r=   bzeWhen `categorical_features` is a boolean array-like, the array should be of shape (n_features,). Got z elements while `X` contains z
 features.c                    s   g | ]} | qS r   r   r   idx)rI   r   r   
<listcomp>  s     z&partial_dependence.<locals>.<listcomp>)rB   OUc                    s   g | ]}t | d qS )rJ   )r   )r   catrZ   r   r   rW     s   c                    s   g | ]}| kqS r   r   rU   )categorical_features_idxr   r   rW     s    zXExpected `categorical_features` to be an array-like of boolean, integer, or string. Got z	 instead.r   r1   c                 S   s   g | ]}|j d  qS r   r)   r   valr   r   r   rW     s     c                 S   s   g | ]}|j d  qS r]   r^   r_   r   r   r   rW   $  s     )rH   r/   
individual)ra   r/   )rH   ra   r/   )r1   )(r   r	   r
   r$   r"   Zclasses_r'   Zndarrayhasattrr   issparser   objectformatjoinr   initr   r   r   r   anyZlessr)   Zasarrayr   Zint32Zravelr   r#   r>   rM   rL   sizer0   r   rF   r3   r8   r   )Z	estimatorr+   r6   rI   rJ   r@   r,   r.   rK   rL   Zaccepted_responsesZaccepted_methodsZsupported_classes_recursionZfeatures_indicesZ
n_featuresr-   r5   r/   r7   rA   r   )rI   r\   rJ   r   r      s    4  

		

  






        

)*__doc__collections.abcr   Znumpyr'   Zscipyr   Zscipy.stats.mstatsr   Z	_pd_utilsr   r   baser	   r
   Zutils.extmathr   utilsr   r   r   r   r   r   Zutils.validationr   r   treer   Zensembler   
exceptionsr   Zensemble._gbr   Z2ensemble._hist_gradient_boosting.gradient_boostingr   __all__r0   r8   rF   r   r   r   r   r   <module>   sB   P
[