U
    3du4                     @   sr   d dl mZ d dlZddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZmZmZ d	d
 ZG dd dZdS )    )reduceN   )LabelEncoder)check_matplotlib_support)_safe_indexing)is_regressor)check_is_fitted_is_arraylike_not_scalar_num_featuresc                    s   t  d}|r(t jd r(d}t||rVt jdkrV|dkrNd}t|dg}n|dkrjd	d
dg}n|g} fdd|D }tdd |}|dkrt jj dd| d|S )aw  Return prediction method from the `response_method` for decision boundary.

    Parameters
    ----------
    estimator : object
        Fitted estimator to check.

    response_method : {'auto', 'predict_proba', 'decision_function', 'predict'}
        Specifies whether to use :term:`predict_proba`,
        :term:`decision_function`, :term:`predict` as the target response.
        If set to 'auto', the response method is tried in the following order:
        :term:`decision_function`, :term:`predict_proba`, :term:`predict`.

    Returns
    -------
    prediction_method: callable
        Prediction method of estimator.
    classes_r   zFMulti-label and multi-output multi-class classifiers are not supported   >   autopredictzUMulticlass classifiers are only supported when response_method is 'predict' or 'auto'r   r   Zdecision_functionZpredict_probac                    s   g | ]}t  |d qS N)getattr).0method	estimator N/tmp/pip-unpacked-wheel-zrfo1fqw/sklearn/inspection/_plot/decision_boundary.py
<listcomp>5   s     z3_check_boundary_response_method.<locals>.<listcomp>c                 S   s   | p|S r   r   )xyr   r   r   <lambda>6       z1_check_boundary_response_method.<locals>.<lambda>Nz' has none of the following attributes: , .)	hasattrr	   r   
ValueErrorlenr   	__class____name__join)r   response_methodZhas_classesmsgZmethods_listZprediction_methodr   r   r   _check_boundary_response_method   s(    
r&   c                	   @   sH   e Zd ZdZdddddZdddZed	d
ddddddddZdS )DecisionBoundaryDisplaya	  Decisions boundary visualization.

    It is recommended to use
    :func:`~sklearn.inspection.DecisionBoundaryDisplay.from_estimator`
    to create a :class:`DecisionBoundaryDisplay`. All parameters are stored as
    attributes.

    Read more in the :ref:`User Guide <visualizations>`.

    .. versionadded:: 1.1

    Parameters
    ----------
    xx0 : ndarray of shape (grid_resolution, grid_resolution)
        First output of :func:`meshgrid <numpy.meshgrid>`.

    xx1 : ndarray of shape (grid_resolution, grid_resolution)
        Second output of :func:`meshgrid <numpy.meshgrid>`.

    response : ndarray of shape (grid_resolution, grid_resolution)
        Values of the response function.

    xlabel : str, default=None
        Default label to place on x axis.

    ylabel : str, default=None
        Default label to place on y axis.

    Attributes
    ----------
    surface_ : matplotlib `QuadContourSet` or `QuadMesh`
        If `plot_method` is 'contour' or 'contourf', `surface_` is a
        :class:`QuadContourSet <matplotlib.contour.QuadContourSet>`. If
        `plot_method` is 'pcolormesh', `surface_` is a
        :class:`QuadMesh <matplotlib.collections.QuadMesh>`.

    ax_ : matplotlib Axes
        Axes with confusion matrix.

    figure_ : matplotlib Figure
        Figure containing the confusion matrix.

    See Also
    --------
    DecisionBoundaryDisplay.from_estimator : Plot decision boundary given an estimator.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.inspection import DecisionBoundaryDisplay
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> iris = load_iris()
    >>> feature_1, feature_2 = np.meshgrid(
    ...     np.linspace(iris.data[:, 0].min(), iris.data[:, 0].max()),
    ...     np.linspace(iris.data[:, 1].min(), iris.data[:, 1].max())
    ... )
    >>> grid = np.vstack([feature_1.ravel(), feature_2.ravel()]).T
    >>> tree = DecisionTreeClassifier().fit(iris.data[:, :2], iris.target)
    >>> y_pred = np.reshape(tree.predict(grid), feature_1.shape)
    >>> display = DecisionBoundaryDisplay(
    ...     xx0=feature_1, xx1=feature_2, response=y_pred
    ... )
    >>> display.plot()
    <...>
    >>> display.ax_.scatter(
    ...     iris.data[:, 0], iris.data[:, 1], c=iris.target, edgecolor="black"
    ... )
    <...>
    >>> plt.show()
    N)xlabelylabelc                C   s"   || _ || _|| _|| _|| _d S r   xx0xx1responser(   r)   )selfr+   r,   r-   r(   r)   r   r   r   __init__   s
    z DecisionBoundaryDisplay.__init__contourfc           	      K   s   t d ddlm} |dkr$td|dkr8| \}}t||}|| j| j| jf|| _	|dk	sj|
 s|dkrx| jn|}|| |dk	s| s|dkr| jn|}|| || _|j| _| S )a  Plot visualization.

        Parameters
        ----------
        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.

        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        xlabel : str, default=None
            Overwrite the x-axis label.

        ylabel : str, default=None
            Overwrite the y-axis label.

        **kwargs : dict
            Additional keyword arguments to be passed to the `plot_method`.

        Returns
        -------
        display: :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores computed values.
        DecisionBoundaryDisplay.plotr   Nr0   ZcontourZ
pcolormeshz:plot_method must be 'contourf', 'contour', or 'pcolormesh')r   Zmatplotlib.pyplotZpyplotr   Zsubplotsr   r+   r,   r-   Zsurface_Z
get_xlabelr(   Z
set_xlabelZ
get_ylabelr)   Z
set_ylabelZax_figureZfigure_)	r.   plot_methodaxr(   r)   kwargsZplt_Z	plot_funcr   r   r   plot   s&    


r1   d   g      ?r   )grid_resolutionepsr4   r$   r(   r)   r5   c                K   sX  t | j d t| |dks0td| d|dksHtd| dd}||krtd|}td	| d
| dt|}|dkrtd| dt|dddt|ddd }}| | | |  }}| | | |  }}t	
t	|||t	|||\}}t|drZ|jg ddf  }| |jdddf< | |jdddf< nt	j| | f }t||}||}|jdkrt|drt }|j|_||}|jdkrt|rtd|dddf }|dkrt|dr |jd nd}|dkr(t|dr$|jd nd}t||||j||d}|jf |	|d|
S )a  Plot decision boundary given an estimator.

        Read more in the :ref:`User Guide <visualizations>`.

        Parameters
        ----------
        estimator : object
            Trained estimator used to plot the decision boundary.

        X : {array-like, sparse matrix, dataframe} of shape (n_samples, 2)
            Input data that should be only 2-dimensional.

        grid_resolution : int, default=100
            Number of grid points to use for plotting decision boundary.
            Higher values will make the plot look nicer but be slower to
            render.

        eps : float, default=1.0
            Extends the minimum and maximum values of X for evaluating the
            response function.

        plot_method : {'contourf', 'contour', 'pcolormesh'}, default='contourf'
            Plotting method to call when plotting the response. Please refer
            to the following matplotlib documentation for details:
            :func:`contourf <matplotlib.pyplot.contourf>`,
            :func:`contour <matplotlib.pyplot.contour>`,
            :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`.

        response_method : {'auto', 'predict_proba', 'decision_function',                 'predict'}, default='auto'
            Specifies whether to use :term:`predict_proba`,
            :term:`decision_function`, :term:`predict` as the target response.
            If set to 'auto', the response method is tried in the following order:
            :term:`decision_function`, :term:`predict_proba`, :term:`predict`.
            For multiclass problems, :term:`predict` is selected when
            `response_method="auto"`.

        xlabel : str, default=None
            The label used for the x-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.

        ylabel : str, default=None
            The label used for the y-axis. If `None`, an attempt is made to
            extract a label from `X` if it is a dataframe, otherwise an empty
            string is used.

        ax : Matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        **kwargs : dict
            Additional keyword arguments to be passed to the
            `plot_method`.

        Returns
        -------
        display : :class:`~sklearn.inspection.DecisionBoundaryDisplay`
            Object that stores the result.

        See Also
        --------
        DecisionBoundaryDisplay : Decision boundary visualization.
        ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
            given an estimator, the data, and the label.
        ConfusionMatrixDisplay.from_predictions : Plot the confusion matrix
            given the true and predicted labels.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import load_iris
        >>> from sklearn.linear_model import LogisticRegression
        >>> from sklearn.inspection import DecisionBoundaryDisplay
        >>> iris = load_iris()
        >>> X = iris.data[:, :2]
        >>> classifier = LogisticRegression().fit(X, iris.target)
        >>> disp = DecisionBoundaryDisplay.from_estimator(
        ...     classifier, X, response_method="predict",
        ...     xlabel=iris.feature_names[0], ylabel=iris.feature_names[1],
        ...     alpha=0.5,
        ... )
        >>> disp.ax_.scatter(X[:, 0], X[:, 1], c=iris.target, edgecolor="k")
        <...>
        >>> plt.show()
        z.from_estimator   z,grid_resolution must be greater than 1. Got z	 instead.r   z,eps must be greater than or equal to 0. Got r2   r   zplot_method must be one of z. Got r   z#n_features must be equal to 2. Got )ZaxisilocNr   r   z)Multi-output regressors are not supportedcolumns r*   )r5   r4   )r   r"   r   r   r#   r
   r   minmaxnpZmeshgridZlinspacer   r=   copyZravelZc_r&   r   r   Z	transformndimr   r>   r'   Zreshapeshaper8   )clsr   Xr:   r;   r4   r$   r(   r)   r5   r6   Zpossible_plot_methodsZavailable_methodsZnum_featuresZx0x1Zx0_minZx0_maxZx1_minZx1_maxr+   r,   ZX_gridZ	pred_funcr-   encoderZdisplayr   r   r   from_estimator   sn    e









z&DecisionBoundaryDisplay.from_estimator)r0   NNN)r"   
__module____qualname____doc__r/   r8   classmethodrJ   r   r   r   r   r'   @   s   I
7r'   )	functoolsr   ZnumpyrB   Zpreprocessingr   utilsr   r   baser   Zutils.validationr   r	   r
   r&   r'   r   r   r   r   <module>   s   0