U
    3d:0                     @   s   d Z ddlZddlmZmZ ddlZddlmZ ddl	m
Z
 ddlmZ ddlmZ dd	lmZmZ dd
lmZmZ ddlmZ ddlmZmZ ddlmZ ddddddgZeedZG dd de
ZdS )z5
Kernel Density Estimation
-------------------------
    N)IntegralReal)gammainc   )BaseEstimatorVALID_METRICS)check_random_state)_check_sample_weightcheck_is_fitted)Interval
StrOptions)	row_norms   )BallTreeDTYPE)KDTreegaussiantophatZepanechnikovZexponentialZlinearZcosine)	ball_treekd_treec                   @   s
  e Zd ZU dZeeddddeddhgeee	 dhB geee
geeejd	d
 e	 D  geeddddgeeddddgdgeeddddgdegd	Zeed< dddddddddd	ddZdd Zd#ddZdd Zd$ddZd%dd Zd!d" ZdS )&KernelDensitya  Kernel Density Estimation.

    Read more in the :ref:`User Guide <kernel_density>`.

    Parameters
    ----------
    bandwidth : float or {"scott", "silverman"}, default=1.0
        The bandwidth of the kernel. If bandwidth is a float, it defines the
        bandwidth of the kernel. If bandwidth is a string, one of the estimation
        methods is implemented.

    algorithm : {'kd_tree', 'ball_tree', 'auto'}, default='auto'
        The tree algorithm to use.

    kernel : {'gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear',                  'cosine'}, default='gaussian'
        The kernel to use.

    metric : str, default='euclidean'
        Metric to use for distance computation. See the
        documentation of `scipy.spatial.distance
        <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
        the metrics listed in
        :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
        values.

        Not all metrics are valid with all algorithms: refer to the
        documentation of :class:`BallTree` and :class:`KDTree`. Note that the
        normalization of the density output is correct only for the Euclidean
        distance metric.

    atol : float, default=0
        The desired absolute tolerance of the result.  A larger tolerance will
        generally lead to faster execution.

    rtol : float, default=0
        The desired relative tolerance of the result.  A larger tolerance will
        generally lead to faster execution.

    breadth_first : bool, default=True
        If true (default), use a breadth-first approach to the problem.
        Otherwise use a depth-first approach.

    leaf_size : int, default=40
        Specify the leaf size of the underlying tree.  See :class:`BallTree`
        or :class:`KDTree` for details.

    metric_params : dict, default=None
        Additional parameters to be passed to the tree for use with the
        metric.  For more information, see the documentation of
        :class:`BallTree` or :class:`KDTree`.

    Attributes
    ----------
    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    tree_ : ``BinaryTree`` instance
        The tree algorithm for fast generalized N-point problems.

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

    bandwidth_ : float
        Value of the bandwidth, given directly by the bandwidth parameter or
        estimated using the 'scott' or 'silverman' method.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.neighbors.KDTree : K-dimensional tree for fast generalized N-point
        problems.
    sklearn.neighbors.BallTree : Ball tree for fast generalized N-point
        problems.

    Examples
    --------
    Compute a gaussian kernel density estimate with a fixed bandwidth.

    >>> from sklearn.neighbors import KernelDensity
    >>> import numpy as np
    >>> rng = np.random.RandomState(42)
    >>> X = rng.random_sample((100, 3))
    >>> kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(X)
    >>> log_density = kde.score_samples(X[:3])
    >>> log_density
    array([-1.52955942, -1.51462041, -1.60244657])
    r   NZneither)closedscott	silvermanautoc                 C   s   g | ]}t | qS  r   ).0Zalgr   r   :/tmp/pip-unpacked-wheel-zrfo1fqw/sklearn/neighbors/_kde.py
<listcomp>   s     zKernelDensity.<listcomp>leftbooleanr   )		bandwidth	algorithmkernelmetricatolrtolbreadth_first	leaf_sizemetric_params_parameter_constraints      ?r   Z	euclideanT(   c       	   
      C   s:   || _ || _|| _|| _|| _|| _|| _|| _|	| _d S )N)	r#   r"   r$   r%   r&   r'   r(   r)   r*   )
selfr"   r#   r$   r%   r&   r'   r(   r)   r*   r   r   r   __init__   s    zKernelDensity.__init__c                 C   sP   |dkr&|t jkrdS |tjkrLdS n&|t| jkrHtdt| ||S d S )Nr   r   r   zinvalid metric for {0}: '{1}')r   Zvalid_metricsr   	TREE_DICT
ValueErrorformat)r.   r#   r%   r   r   r   _choose_algorithm   s    

zKernelDensity._choose_algorithmc                 C   s   |    | | j| j}t| jtr| jdkrN|jd d|jd d   | _q| jdkr|jd |jd d  d d|jd d   | _n| j| _| j	|dt
d	}|d
k	rt||t
dd}| j}|d
kri }t| |f| j| j|d|| _| S )a  Fit the Kernel Density model on the data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        sample_weight : array-like of shape (n_samples,), default=None
            List of sample weights attached to the data X.

            .. versionadded:: 0.20

        Returns
        -------
        self : object
            Returns the instance itself.
        r   r   r      r   r   C)orderdtypeNT)Zonly_non_negative)r%   r)   sample_weight)Z_validate_paramsr3   r#   r%   
isinstancer"   strshape
bandwidth__validate_datar   r
   r*   r0   r)   tree_)r.   Xyr9   r#   kwargsr   r   r   fit   s>    
 
   zKernelDensity.fitc              	   C   s|   t |  | j|dtdd}| jjdkr6| jjjd }n| jj}| j| }| jj	|| j
| j|| j| jdd}|t|8 }|S )a  Compute the log-likelihood of each sample under the model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            An array of points to query.  Last dimension should match dimension
            of training data (n_features).

        Returns
        -------
        density : ndarray of shape (n_samples,)
            Log-likelihood of each sample in `X`. These are normalized to be
            probability densities, so values will be low for high-dimensional
            data.
        r6   F)r7   r8   resetNr   T)hr$   r&   r'   r(   Z
return_log)r   r>   r   r?   r9   datar<   
sum_weightr&   Zkernel_densityr=   r$   r'   r(   nplog)r.   r@   NZatol_NZlog_densityr   r   r   score_samples   s"    
	zKernelDensity.score_samplesc                 C   s   t | |S )a}  Compute the total log-likelihood under the model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            List of n_features-dimensional data points.  Each row
            corresponds to a single data point.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        Returns
        -------
        logprob : float
            Total log-likelihood of the data in X. This is normalized to be a
            probability density, so the value will be low for high-dimensional
            data.
        )rH   sumrK   )r.   r@   rA   r   r   r   score  s    zKernelDensity.scorec                 C   s.  t |  | jdkrt t| jj}t|}|jdd|d}| jj	dkrb||j
d  tj}n,tt| jj	}|d }t||| }| jdkrt||| | jS | jdkr*|j
d }	|j||	fd}
t|
d	d
}td|	 d| d|	  | j t| }|| |
|ddtjf   S dS )a  Generate random samples from the model.

        Currently, this is implemented only for gaussian and tophat kernels.

        Parameters
        ----------
        n_samples : int, default=1
            Number of samples to generate.

        random_state : int, RandomState instance or None, default=None
            Determines random number generation used to generate
            random samples. Pass an int for reproducible results
            across multiple function calls.
            See :term:`Glossary <random_state>`.

        Returns
        -------
        X : array-like of shape (n_samples, n_features)
            List of samples.
        )r   r   r   r   )sizeNr4   r   r   T)Zsquaredg      ?r,   )r   r$   NotImplementedErrorrH   Zasarrayr?   rF   r	   uniformr9   r<   ZastypeZint64ZcumsumZsearchsortedZ
atleast_2dnormalr=   r   r   sqrtZnewaxis)r.   Z	n_samplesZrandom_staterF   rnguiZcumsum_weightrG   Zdimr@   Zs_sqZ
correctionr   r   r   sample0  s0    


zKernelDensity.samplec                 C   s   dddiiS )NZ_xfail_checksZcheck_sample_weights_invariancez'sample_weight must have positive valuesr   )r.   r   r   r   
_more_tagse  s
    zKernelDensity._more_tags)NN)N)r   N)__name__
__module____qualname____doc__r   r   r   setr0   keysVALID_KERNELS	itertoolschainr   dictr+   __annotations__r/   r3   rC   rK   rM   rV   rW   r   r   r   r   r   $   s@   
_

8&

5r   )r[   r_   Znumbersr   r   ZnumpyrH   Zscipy.specialr   baser   Zneighbors._baser   utilsr	   Zutils.validationr
   r   Zutils._param_validationr   r   Zutils.extmathr   Z
_ball_treer   r   Z_kd_treer   r^   r0   r   r   r   r   r   <module>   s*   	
