U
    2dH=                     @   s   d dl mZ d dlZd dlZddlmZ ddlmZm	Z	 ddl
mZmZmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZ G dd de	eZdS )    )IntegralN   )OneHotEncoder   )BaseEstimatorTransformerMixin)HiddenInterval
StrOptionsOptions)check_array)check_is_fitted)check_random_state)_check_feature_names_in)_safe_indexingc                
   @   s   e Zd ZU dZeedddddgeddd	hged
ddhgeee	j
e	jhdgeedddddeedhgdgdZeed< d ddddddddZd!ddZdd Zdd Zdd Zd"ddZdS )#KBinsDiscretizera  
    Bin continuous data into intervals.

    Read more in the :ref:`User Guide <preprocessing_discretization>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    n_bins : int or array-like of shape (n_features,), default=5
        The number of bins to produce. Raises ValueError if ``n_bins < 2``.

    encode : {'onehot', 'onehot-dense', 'ordinal'}, default='onehot'
        Method used to encode the transformed result.

        - 'onehot': Encode the transformed result with one-hot encoding
          and return a sparse matrix. Ignored features are always
          stacked to the right.
        - 'onehot-dense': Encode the transformed result with one-hot encoding
          and return a dense array. Ignored features are always
          stacked to the right.
        - 'ordinal': Return the bin identifier encoded as an integer value.

    strategy : {'uniform', 'quantile', 'kmeans'}, default='quantile'
        Strategy used to define the widths of the bins.

        - 'uniform': All bins in each feature have identical widths.
        - 'quantile': All bins in each feature have the same number of points.
        - 'kmeans': Values in each bin have the same nearest center of a 1D
          k-means cluster.

    dtype : {np.float32, np.float64}, default=None
        The desired data-type for the output. If None, output dtype is
        consistent with input dtype. Only np.float32 and np.float64 are
        supported.

        .. versionadded:: 0.24

    subsample : int or None (default='warn')
        Maximum number of samples, used to fit the model, for computational
        efficiency. Used when `strategy="quantile"`.
        `subsample=None` means that all the training samples are used when
        computing the quantiles that determine the binning thresholds.
        Since quantile computation relies on sorting each column of `X` and
        that sorting has an `n log(n)` time complexity,
        it is recommended to use subsampling on datasets with a
        very large number of samples.

        .. deprecated:: 1.1
           In version 1.3 and onwards, `subsample=2e5` will be the default.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for subsampling.
        Pass an int for reproducible results across multiple function calls.
        See the `subsample` parameter for more details.
        See :term:`Glossary <random_state>`.

        .. versionadded:: 1.1

    Attributes
    ----------
    bin_edges_ : ndarray of ndarray of shape (n_features,)
        The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )``
        Ignored features will have empty arrays.

    n_bins_ : ndarray of shape (n_features,), dtype=np.int_
        Number of bins per feature. Bins whose width are too small
        (i.e., <= 1e-8) are removed with a warning.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    Binarizer : Class used to bin values as ``0`` or
        ``1`` based on a parameter ``threshold``.

    Notes
    -----
    In bin edges for feature ``i``, the first and last values are used only for
    ``inverse_transform``. During transform, bin edges are extended to::

      np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf])

    You can combine ``KBinsDiscretizer`` with
    :class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess
    part of the features.

    ``KBinsDiscretizer`` might produce constant features (e.g., when
    ``encode = 'onehot'`` and certain bins do not contain any data).
    These features can be removed with feature selection algorithms
    (e.g., :class:`~sklearn.feature_selection.VarianceThreshold`).

    Examples
    --------
    >>> from sklearn.preprocessing import KBinsDiscretizer
    >>> X = [[-2, 1, -4,   -1],
    ...      [-1, 2, -3, -0.5],
    ...      [ 0, 3, -2,  0.5],
    ...      [ 1, 4, -1,    2]]
    >>> est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
    >>> est.fit(X)
    KBinsDiscretizer(...)
    >>> Xt = est.transform(X)
    >>> Xt  # doctest: +SKIP
    array([[ 0., 0., 0., 0.],
           [ 1., 1., 1., 0.],
           [ 2., 2., 2., 1.],
           [ 2., 2., 2., 2.]])

    Sometimes it may be useful to convert the data back into the original
    feature space. The ``inverse_transform`` function converts the binned
    data into the original feature space. Each value will be equal to the mean
    of the two bin edges.

    >>> est.bin_edges_[0]
    array([-2., -1.,  0.,  1.])
    >>> est.inverse_transform(Xt)
    array([[-1.5,  1.5, -3.5, -0.5],
           [-0.5,  2.5, -2.5, -0.5],
           [ 0.5,  3.5, -1.5,  0.5],
           [ 0.5,  3.5, -1.5,  1.5]])
    r   Nleft)closedz
array-likeonehotzonehot-denseordinaluniformquantilekmeansr   warnrandom_staten_binsencodestrategydtype	subsampler   _parameter_constraints   )r   r   r   r    r   c                C   s(   || _ || _|| _|| _|| _|| _d S Nr   )selfr   r   r   r   r    r    r%   I/tmp/pip-unpacked-wheel-zrfo1fqw/sklearn/preprocessing/_discretization.py__init__   s    
zKBinsDiscretizer.__init__c                 C   sR  |    | j|dd}| jtjtjfkr0| j}n|j}|j\}}| jdkr| jdk	r| jdkrt|dkrt	
dt qt| j}|| jkr|j|| jdd	}t||}n(| jdkrt| jtrtd
| j d|jd }| |}tj|td}	t|D ]}
|dd|
f }| |  }}||krZt	
d|
  d||
< ttj tjg|	|
< q| jdkrt||||
 d |	|
< n| jdkrtdd||
 d }tt|||	|
< n| jdkrddlm} t||||
 d }|dd |dd  dddf d }|||
 |dd}| |dddf j!dddf }|"  |dd |dd  d |	|
< tj#||	|
 |f |	|
< | jdkrtj$|	|
 tjddk}|	|
 | |	|
< t%|	|
 d ||
 krt	
d|
  t%|	|
 d ||
< q|	| _&|| _'d| j(krNt)dd | j'D | j(dk|d| _*| j* tdt%| j'f | S )a  
        Fit the estimator.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        Returns
        -------
        self : object
            Returns the instance itself.
        numericr   r   Nr   g     jAzIn version 1.3 onwards, subsample=2e5 will be used by default. Set subsample explicitly to silence this warning in the mean time. Set subsample=None to disable subsampling explicitly.F)sizereplacez"Invalid parameter for `strategy`: z6. `subsample` must be used with `strategy="quantile"`.r   z3Feature %d is constant and will be replaced with 0.r   r   d   r   r   )KMeans      ?)Z
n_clustersinitZn_init)r   r   )Zto_beging:0yE>zqBins whose width are too small (i.e., <= 1e-8) in feature %d are removed. Consider decreasing the number of bins.r   c                 S   s   g | ]}t |qS r%   )npZarange.0ir%   r%   r&   
<listcomp>#  s     z(KBinsDiscretizer.fit.<locals>.<listcomp>)
categoriesZsparse_outputr   )+Z_validate_params_validate_datar   r1   float64float32shaper   r    warningsr   FutureWarningr   r   choicer   
isinstancer   
ValueError_validate_n_binszerosobjectrangeminmaxarrayinfZlinspaceZasarrayZ
percentileZclusterr-   fitZcluster_centers_sortZr_Zediff1dlen
bin_edges_n_bins_r   r   _encoder)r$   XyZoutput_dtypeZ	n_samples
n_featuresrngZsubsample_idxr   	bin_edgesjjcolumnZcol_minZcol_maxZ	quantilesr-   Zuniform_edgesr0   kmZcentersmaskr%   r%   r&   rH      s    



  


($ 
zKBinsDiscretizer.fitc                 C   s   | j }t|tr tj||tdS t|tddd}|jdksH|jd |krPt	d|dk ||kB }t
|d }|jd dkrd	d
d |D }t	dtj||S )z0Returns n_bins_, the number of bins per feature.r)   TF)r   copyZ	ensure_2dr   r   z8n_bins must be a scalar or array of shape (n_features,).r   z, c                 s   s   | ]}t |V  qd S r#   )strr2   r%   r%   r&   	<genexpr><  s     z4KBinsDiscretizer._validate_n_bins.<locals>.<genexpr>zk{} received an invalid number of bins at indices {}. Number of bins must be at least 2, and must be an int.)r   r>   r   r1   fullintr   ndimr:   r?   wherejoinformatr   __name__)r$   rP   Z	orig_binsr   Zbad_nbins_valueZviolating_indicesindicesr%   r%   r&   r@   -  s"    
 z!KBinsDiscretizer._validate_n_binsc                 C   s   t |  | jdkrtjtjfn| j}| j|d|dd}| j}t|jd D ]8}tj	|| dd |dd|f dd|dd|f< qJ| j
d	kr|S d}d
| j
kr| jj}|j| j_z| j|}W 5 || j_X |S )a  
        Discretize the data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        Returns
        -------
        Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}
            Data in the binned space. Will be a sparse matrix if
            `self.encode='onehot'` and ndarray otherwise.
        NTF)rW   r   resetr   r.   right)Zsider   r   )r   r   r1   r8   r9   r7   rK   rC   r:   Zsearchsortedr   rM   	transform)r$   rN   r   XtrR   rS   Z
dtype_initZXt_encr%   r%   r&   rd   F  s     6



zKBinsDiscretizer.transformc                 C   s   t |  d| jkr| j|}t|dtjtjfd}| jj	d }|j	d |krdt
d||j	d t|D ]P}| j| }|dd |dd  d	 }|t|dd|f  |dd|f< ql|S )
a  
        Transform discretized data back to original feature space.

        Note that this function does not regenerate the original data
        due to discretization rounding.

        Parameters
        ----------
        Xt : array-like of shape (n_samples, n_features)
            Transformed data in the binned space.

        Returns
        -------
        Xinv : ndarray, dtype={np.float32, np.float64}
            Data in the original feature space.
        r   T)rW   r   r   r   z8Incorrect number of features. Expecting {}, received {}.Nr.   r/   )r   r   rM   inverse_transformr   r1   r8   r9   rL   r:   r?   r_   rC   rK   int_)r$   re   ZXinvrP   rS   rR   Zbin_centersr%   r%   r&   rf   m  s"    
 
(z"KBinsDiscretizer.inverse_transformc                 C   s$   t | |}t| dr | j|S |S )a  Get output feature names.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then the following input feature names are generated:
              `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        rM   )r   hasattrrM   get_feature_names_out)r$   Zinput_featuresr%   r%   r&   ri     s    

z&KBinsDiscretizer.get_feature_names_out)r"   )N)N)r`   
__module____qualname____doc__r	   r   r
   r   typer1   r8   r9   r   r!   dict__annotations__r'   rH   r@   rd   rf   ri   r%   r%   r%   r&   r      s2   
  
t'&r   )Znumbersr   Znumpyr1   r;    r   baser   r   Zutils._param_validationr   r	   r
   r   Zutils.validationr   r   r   r   utilsr   r   r%   r%   r%   r&   <module>   s   