U
    d3                     @   s   d dl mZmZmZmZ d dlZd dlmZ ddlm	Z
 eeeejf ZeejdddZeeef eejejf d	d
dZee eej dddZG dd deZdS )    )DictListOptionalUnionN) _TensorPipeRpcBackendOptionsBase   )	constants)devicereturnc                 C   s*   t | } | jdkr&td| j d| S )NZcudazA`set_devices` expect a list of CUDA devices, but got device type .)torchr	   type
ValueError)r	    r   A/tmp/pip-unpacked-wheel-ua33x9lu/torch/distributed/rpc/options.py
_to_device   s    

r   )
device_mapr
   c                 C   sj   i }i }|   D ]T\}}t|t| }}||krTtd| d||  d| |||< |||< q|S )Nz9`device_map` only supports 1-to-1 mapping, trying to map  and  to )itemsr   r	   r   )r   full_device_mapZreverse_mapkvr   r   r   _to_device_map   s    
r   )devicesr
   c                 C   s   t tt| S )N)listmapr   r   r   r   r   _to_device_list&   s    r   c                
       s   e Zd ZdZejejejdddddee	e
eee
eeef f  eee  ee ee d fddZe
eeef d fddZee d	d
dZ  ZS )TensorPipeRpcBackendOptionsa'  
    The backend options for
    :class:`~torch.distributed.rpc.TensorPipeAgent`, derived from
    :class:`~torch.distributed.rpc.RpcBackendOptions`.

    Args:
        num_worker_threads (int, optional): The number of threads in the
            thread-pool used by
            :class:`~torch.distributed.rpc.TensorPipeAgent` to execute
            requests (default: 16).
        rpc_timeout (float, optional): The default timeout, in seconds,
            for RPC requests (default: 60 seconds). If the RPC has not
            completed in this timeframe, an exception indicating so will
            be raised. Callers can override this timeout for individual
            RPCs in :meth:`~torch.distributed.rpc.rpc_sync` and
            :meth:`~torch.distributed.rpc.rpc_async` if necessary.
        init_method (str, optional): The URL to initialize the distributed
            store used for rendezvous. It takes any value accepted for the
            same argument of :meth:`~torch.distributed.init_process_group`
            (default: ``env://``).
        device_maps (Dict[str, Dict], optional): Device placement mappings from
            this worker to the callee. Key is the callee worker name and value
            the dictionary (``Dict`` of ``int``, ``str``, or ``torch.device``)
            that maps this worker's devices to the callee worker's devices.
            (default: ``None``)
        devices (List[int, str, or ``torch.device``], optional): all local
            CUDA devices used by RPC agent. By Default, it will be initialized
            to all local devices from its own ``device_maps`` and corresponding
            devices from its peers' ``device_maps``. When processing CUDA RPC
            requests, the agent will properly synchronize CUDA streams for
            all devices in this ``List``.
    N)num_worker_threadsrpc_timeoutinit_methoddevice_mapsr   _transports	_channelsc          
   	      sN   |d kri ndd |  D }|d kr*g nt|}	t |||||||	 d S )Nc                 S   s   i | ]\}}|t |qS r   )r   ).0r   r   r   r   r   
<dictcomp>Z   s      z8TensorPipeRpcBackendOptions.__init__.<locals>.<dictcomp>)r   r   super__init__)
selfr    r!   r"   r#   r   r$   r%   Zfull_device_mapsZfull_device_list	__class__r   r   r)   L   s    z$TensorPipeRpcBackendOptions.__init__)tor   c              	      sz   t |}t j}||krh| D ]F\}}||| kr ||| | kr td| d| d|| |  q t || dS )a  
        Set device mapping between each RPC caller and callee pair. This
        function can be called multiple times to incrementally add
        device placement configurations.

        Args:
            worker_name (str): Callee name.
            device_map (Dict of int, str, or torch.device): Device placement
                mappings from this worker to the callee. This map must be
                invertible.

        Example::
            >>> # both workers
            >>> def add(x, y):
            >>>     print(x)  # tensor([1., 1.], device='cuda:1')
            >>>     return x + y, (x + y).to(2)
            >>>
            >>> # on worker 0
            >>> options = TensorPipeRpcBackendOptions(
            >>>     num_worker_threads=8,
            >>>     device_maps={"worker1": {0: 1}}
            >>>     # maps worker0's cuda:0 to worker1's cuda:1
            >>> )
            >>> options.set_device_map("worker1", {1: 2})
            >>> # maps worker0's cuda:1 to worker1's cuda:2
            >>>
            >>> rpc.init_rpc(
            >>>     "worker0",
            >>>     rank=0,
            >>>     world_size=2,
            >>>     backend=rpc.BackendType.TENSORPIPE,
            >>>     rpc_backend_options=options
            >>> )
            >>>
            >>> x = torch.ones(2)
            >>> rets = rpc.rpc_sync("worker1", add, args=(x.to(0), 1))
            >>> # The first argument will be moved to cuda:1 on worker1. When
            >>> # sending the return value back, it will follow the invert of
            >>> # the device map, and hence will be moved back to cuda:0 and
            >>> # cuda:1 on worker0
            >>> print(rets[0])  # tensor([2., 2.], device='cuda:0')
            >>> print(rets[1])  # tensor([2., 2.], device='cuda:1')
        z=`set_device_map` only supports 1-to-1 mapping, trying to map r   r   N)r   r(   r#   r   r   Z_set_device_map)r*   r-   r   r   Zcurr_device_mapsr   r   r+   r   r   set_device_mapg   s    ,z*TensorPipeRpcBackendOptions.set_device_mapr   c                 C   s   t || _dS )ab  
        Set local devices used by the TensorPipe RPC agent. When processing
        CUDA RPC requests, the TensorPipe RPC agent will properly synchronize
        CUDA streams for all devices in this ``List``.

        Args:
            devices (List of int, str, or torch.device): local devices used by
                the TensorPipe RPC agent.
        N)r   r   )r*   r   r   r   r   set_devices   s    
z'TensorPipeRpcBackendOptions.set_devices)__name__
__module____qualname____doc__rpc_contantsZDEFAULT_NUM_WORKER_THREADSZDEFAULT_RPC_TIMEOUT_SECZDEFAULT_INIT_METHODintfloatstrr   r   
DeviceTyper   r)   r.   r/   __classcell__r   r   r+   r   r   *   s&   $
9r   )typingr   r   r   r   r   Ztorch._C._distributed_rpcr    r   r4   r5   r7   r	   r8   r   r   r   r   r   r   r   r   <module>   s   
