U
    d                     @   sD  d dl Z d dlmZmZ d dlZd dlmZ ddlmZ d dlm	Z	m
Z
mZ d dlmZ ddlmZ d	d
lmZ G dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd  d eZG d!d" d"eZG d#d$ d$eZG d%d& d&eZ G d'd( d(eZ!G d)d* d*eZ"G d+d, d,eZ#G d-d. d.eZ$G d/d0 d0eZ%G d1d2 d2eZ&G d3d4 d4eZ'G d5d6 d6eZ(G d7d8 d8eZ)G d9d: d:eZ*G d;d< d<eZ+G d=d> d>eZ,G d?d@ d@eZ-G dAdB dBeZ.G dCdD dDeZ/dS )E    N)OptionalTuple)Tensor   )NonDynamicallyQuantizableLinear)	constant_xavier_normal_xavier_uniform_)	Parameter)Module   )
functionalc                       sj   e Zd ZU dZdddgZeed< eed< eed< deeedd fdd	Ze	e	d
ddZ
dd Z  ZS )	Thresholda  Thresholds each element of the input Tensor.

    Threshold is defined as:

    .. math::
        y =
        \begin{cases}
        x, &\text{ if } x > \text{threshold} \\
        \text{value}, &\text{ otherwise }
        \end{cases}

    Args:
        threshold: The value to threshold at
        value: The value to replace with
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Examples::

        >>> m = nn.Threshold(0.1, 20)
        >>> input = torch.randn(2)
        >>> output = m(input)
    	thresholdvalueinplaceFN)r   r   r   returnc                    s$   t t|   || _|| _|| _d S N)superr   __init__r   r   r   )selfr   r   r   	__class__ ?/tmp/pip-unpacked-wheel-ua33x9lu/torch/nn/modules/activation.pyr   .   s    zThreshold.__init__inputr   c                 C   s   t || j| j| jS r   )Fr   r   r   r   r   r   r   r   forward5   s    zThreshold.forwardc                 C   s    | j r
dnd}d| j| j|S )N, inplace=True zthreshold={}, value={}{})r   formatr   r   r   Zinplace_strr   r   r   
extra_repr8   s      zThreshold.extra_repr)F__name__
__module____qualname____doc____constants__float__annotations__boolr   r   r   r$   __classcell__r   r   r   r   r      s   

r   c                       sV   e Zd ZU dZdgZeed< ded fddZeeddd	Z	e
d
ddZ  ZS )ReLUa  Applies the rectified linear unit function element-wise:

    :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ReLU.png

    Examples::

        >>> m = nn.ReLU()
        >>> input = torch.randn(2)
        >>> output = m(input)


      An implementation of CReLU - https://arxiv.org/abs/1603.05201

        >>> m = nn.ReLU()
        >>> input = torch.randn(2).unsqueeze(0)
        >>> output = torch.cat((m(input),m(-input)))
    r   Fr   c                    s   t t|   || _d S r   )r   r/   r   r   r   r   r   r   r   r   ]   s    zReLU.__init__r   c                 C   s   t j|| jdS Nr0   )r   Zrelur   r   r   r   r   r   a   s    zReLU.forwardr   c                 C   s   | j r
dnd}|S Nzinplace=Truer!   r0   r#   r   r   r   r$   d   s    zReLU.extra_repr)Fr&   r'   r(   r)   r*   r-   r,   r   r   r   strr$   r.   r   r   r   r   r/   ?   s   
r/   c                       sh   e Zd ZU dZdddgZeed< eed< eed< deeed fd	d
Ze	e	dddZ
dd Z  ZS )RReLUa  Applies the randomized leaky rectified liner unit function, element-wise,
    as described in the paper:

    `Empirical Evaluation of Rectified Activations in Convolutional Network`_.

    The function is defined as:

    .. math::
        \text{RReLU}(x) =
        \begin{cases}
            x & \text{if } x \geq 0 \\
            ax & \text{ otherwise }
        \end{cases}

    where :math:`a` is randomly sampled from uniform distribution
    :math:`\mathcal{U}(\text{lower}, \text{upper})`.

     See: https://arxiv.org/pdf/1505.00853.pdf

    Args:
        lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
        upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/RReLU.png

    Examples::

        >>> m = nn.RReLU(0.1, 0.3)
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`:
        https://arxiv.org/abs/1505.00853
    lowerupperr         ?UUUUUU?F)r8   r9   r   c                    s$   t t|   || _|| _|| _d S r   )r   r7   r   r8   r9   r   )r   r8   r9   r   r   r   r   r      s    zRReLU.__init__r   c                 C   s   t || j| j| j| jS r   )r   Zrrelur8   r9   trainingr   r   r   r   r   r      s    zRReLU.forwardc                 C   s    | j r
dnd}d| j| j|S )Nr    r!   zlower={}, upper={}{})r   r"   r8   r9   r#   r   r   r   r$      s    zRReLU.extra_repr)r:   r;   Fr%   r   r   r   r   r7   i   s   
'
   r7   c                       s|   e Zd ZU dZdddgZeed< eed< eed< deeeee ee dd	 fd
dZ	e
e
dddZedddZ  ZS )Hardtanha  Applies the HardTanh function element-wise.

    HardTanh is defined as:

    .. math::
        \text{HardTanh}(x) = \begin{cases}
            \text{max\_val} & \text{ if } x > \text{ max\_val } \\
            \text{min\_val} & \text{ if } x < \text{ min\_val } \\
            x & \text{ otherwise } \\
        \end{cases}

    Args:
        min_val: minimum value of the linear region range. Default: -1
        max_val: maximum value of the linear region range. Default: 1
        inplace: can optionally do the operation in-place. Default: ``False``

    Keyword arguments :attr:`min_value` and :attr:`max_value`
    have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardtanh.png

    Examples::

        >>> m = nn.Hardtanh(-2, 2)
        >>> input = torch.randn(2)
        >>> output = m(input)
    min_valmax_valr               ?FN)r>   r?   r   	min_value	max_valuer   c                    s`   t t|   |d k	r$td |}|d k	r:td |}|| _|| _|| _| j| jks\td S )Nz>keyword argument min_value is deprecated and rename to min_valz>keyword argument max_value is deprecated and rename to max_val)	r   r=   r   warningswarnr>   r?   r   AssertionError)r   r>   r?   r   rB   rC   r   r   r   r      s    

zHardtanh.__init__r   c                 C   s   t || j| j| jS r   )r   Zhardtanhr>   r?   r   r   r   r   r   r      s    zHardtanh.forwardr3   c                 C   s    | j r
dnd}d| j| j|S )Nr    r!   zmin_val={}, max_val={}{})r   r"   r>   r?   r#   r   r   r   r$      s      zHardtanh.extra_repr)r@   rA   FNN)r&   r'   r(   r)   r*   r+   r,   r-   r   r   r   r   r6   r$   r.   r   r   r   r   r=      s(   

     r=   c                       s6   e Zd ZdZd	ed fddZedddZ  ZS )
ReLU6a  Applies the element-wise function:

    .. math::
        \text{ReLU6}(x) = \min(\max(0,x), 6)

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ReLU6.png

    Examples::

        >>> m = nn.ReLU6()
        >>> input = torch.randn(2)
        >>> output = m(input)
    Fr0   c                    s   t t| dd| d S )N        g      @)r   rG   r   r1   r   r   r   r     s    zReLU6.__init__r3   c                 C   s   | j r
dnd}|S r4   r0   r#   r   r   r   r$     s    zReLU6.extra_repr)F)	r&   r'   r(   r)   r-   r   r6   r$   r.   r   r   r   r   rG      s   rG   c                   @   s    e Zd ZdZeedddZdS )Sigmoida  Applies the element-wise function:

    .. math::
        \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}


    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Sigmoid.png

    Examples::

        >>> m = nn.Sigmoid()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   c                 C   s
   t |S r   )torchZsigmoidr   r   r   r   r   !  s    zSigmoid.forwardNr&   r'   r(   r)   r   r   r   r   r   r   rI     s   rI   c                       sJ   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	  Z
S )Hardsigmoida  Applies the Hardsigmoid function element-wise.

    Hardsigmoid is defined as:

    .. math::
        \text{Hardsigmoid}(x) = \begin{cases}
            0 & \text{if~} x \le -3, \\
            1 & \text{if~} x \ge +3, \\
            x / 6 + 1 / 2 & \text{otherwise}
        \end{cases}

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardsigmoid.png

    Examples::

        >>> m = nn.Hardsigmoid()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   FNr   r   c                    s   t t|   || _d S r   )r   rL   r   r   r1   r   r   r   r   D  s    zHardsigmoid.__init__r   c                 C   s   t || jS r   )r   Zhardsigmoidr   r   r   r   r   r   H  s    zHardsigmoid.forward)Fr&   r'   r(   r)   r*   r-   r,   r   r   r   r.   r   r   r   r   rL   %  s
   
rL   c                   @   s    e Zd ZdZeedddZdS )Tanha  Applies the Hyperbolic Tangent (Tanh) function element-wise.

    Tanh is defined as:

    .. math::
        \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Tanh.png

    Examples::

        >>> m = nn.Tanh()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   c                 C   s
   t |S r   )rJ   tanhr   r   r   r   r   a  s    zTanh.forwardNrK   r   r   r   r   rO   L  s   rO   c                       sV   e Zd ZU dZdgZeed< ded fddZeeddd	Z	e
d
ddZ  ZS )SiLUa  Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
    The SiLU function is also known as the swish function.

    .. math::
        \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}

    .. note::
        See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
        where the SiLU (Sigmoid Linear Unit) was originally coined, and see
        `Sigmoid-Weighted Linear Units for Neural Network Function Approximation
        in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
        a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
        where the SiLU was experimented with later.

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/SiLU.png

    Examples::

        >>> m = nn.SiLU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   Fr0   c                    s   t t|   || _d S r   )r   rQ   r   r   r1   r   r   r   r     s    zSiLU.__init__r   c                 C   s   t j|| jdS r2   )r   Zsilur   r   r   r   r   r     s    zSiLU.forwardr3   c                 C   s   | j r
dnd}|S r4   r0   r#   r   r   r   r$     s    zSiLU.extra_repr)Fr5   r   r   r   r   rQ   d  s   
rQ   c                       sV   e Zd ZU dZdgZeed< ded fddZeeddd	Z	e
d
ddZ  ZS )Mishaw  Applies the Mish function, element-wise.
    Mish: A Self Regularized Non-Monotonic Neural Activation Function.

    .. math::
        \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))

    .. note::
        See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Mish.png

    Examples::

        >>> m = nn.Mish()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   Fr0   c                    s   t t|   || _d S r   )r   rR   r   r   r1   r   r   r   r     s    zMish.__init__r   c                 C   s   t j|| jdS r2   )r   Zmishr   r   r   r   r   r     s    zMish.forwardr3   c                 C   s   | j r
dnd}|S r4   r0   r#   r   r   r   r$     s    zMish.extra_repr)Fr5   r   r   r   r   rR     s   
rR   c                       sJ   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	  Z
S )	Hardswisha'  Applies the hardswish function, element-wise, as described in the paper:

    `Searching for MobileNetV3`_.

    .. math::
        \text{Hardswish}(x) = \begin{cases}
            0 & \text{if~} x \le -3, \\
            x & \text{if~} x \ge +3, \\
            x \cdot (x + 3) /6 & \text{otherwise}
        \end{cases}

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardswish.png

    Examples::

        >>> m = nn.Hardswish()
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _`Searching for MobileNetV3`:
        https://arxiv.org/abs/1905.02244
    r   FNrM   c                    s   t t|   || _d S r   )r   rS   r   r   r1   r   r   r   r     s    zHardswish.__init__r   c                 C   s   t || jS r   )r   Z	hardswishr   r   r   r   r   r     s    zHardswish.forward)FrN   r   r   r   r   rS     s
   
rS   c                       sd   e Zd ZU dZddgZeed< eed< deedd fdd	Ze	e	d
ddZ
edddZ  ZS )ELUan  Applies the Exponential Linear Unit (ELU) function, element-wise, as described
    in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
    Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.

    ELU is defined as:

    .. math::
        \text{ELU}(x) = \begin{cases}
        x, & \text{ if } x > 0\\
        \alpha * (\exp(x) - 1), & \text{ if } x \leq 0
        \end{cases}

    Args:
        alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ELU.png

    Examples::

        >>> m = nn.ELU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    alphar   rA   FNrU   r   r   c                    s   t t|   || _|| _d S r   )r   rT   r   rU   r   r   rU   r   r   r   r   r     s    zELU.__init__r   c                 C   s   t || j| jS r   )r   ZelurU   r   r   r   r   r   r     s    zELU.forwardr3   c                 C   s   | j r
dnd}d| j|S Nr    r!   z
alpha={}{}r   r"   rU   r#   r   r   r   r$     s    zELU.extra_repr)rA   Fr&   r'   r(   r)   r*   r+   r,   r-   r   r   r   r6   r$   r.   r   r   r   r   rT     s   
rT   c                       sd   e Zd ZU dZddgZeed< eed< deedd fdd	Ze	e	d
ddZ
edddZ  ZS )CELUa.  Applies the element-wise function:

    .. math::
        \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))

    More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .

    Args:
        alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/CELU.png

    Examples::

        >>> m = nn.CELU()
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _`Continuously Differentiable Exponential Linear Units`:
        https://arxiv.org/abs/1704.07483
    rU   r   rA   FNrV   c                    s   t t|   || _|| _d S r   )r   r[   r   rU   r   rW   r   r   r   r   (  s    zCELU.__init__r   c                 C   s   t || j| jS r   )r   ZcelurU   r   r   r   r   r   r   -  s    zCELU.forwardr3   c                 C   s   | j r
dnd}d| j|S rX   rY   r#   r   r   r   r$   0  s    zCELU.extra_repr)rA   FrZ   r   r   r   r   r[   	  s   
r[   c                       sX   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	e
dddZ  ZS )SELUay  Applied element-wise, as:

    .. math::
        \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))

    with :math:`\alpha = 1.6732632423543772848170429916717` and
    :math:`\text{scale} = 1.0507009873554804934193349852946`.

    .. warning::
        When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
        ``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
        in order to get `Self-Normalizing Neural Networks`_.
        See :func:`torch.nn.init.calculate_gain` for more information.

    More details can be found in the paper `Self-Normalizing Neural Networks`_ .

    Args:
        inplace (bool, optional): can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/SELU.png

    Examples::

        >>> m = nn.SELU()
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
    r   FNrM   c                    s   t t|   || _d S r   )r   r\   r   r   r1   r   r   r   r   Z  s    zSELU.__init__r   c                 C   s   t || jS r   )r   Zselur   r   r   r   r   r   ^  s    zSELU.forwardr3   c                 C   s   | j r
dnd}|S r4   r0   r#   r   r   r   r$   a  s    zSELU.extra_repr)Fr5   r   r   r   r   r\   5  s   
!r\   c                       sX   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	e
dddZ  ZS )GLUa3  Applies the gated linear unit function
    :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
    of the input matrices and :math:`b` is the second half.

    Args:
        dim (int): the dimension on which to split the input. Default: -1

    Shape:
        - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`

    Examples::

        >>> m = nn.GLU()
        >>> input = torch.randn(4, 2)
        >>> output = m(input)
    dimNr^   r   c                    s   t t|   || _d S r   )r   r]   r   r^   r   r^   r   r   r   r   |  s    zGLU.__init__r   c                 C   s   t || jS r   )r   Zglur^   r   r   r   r   r     s    zGLU.forwardr3   c                 C   s   d | jS )Nzdim={}r"   r^   r   r   r   r   r$     s    zGLU.extra_repr)r_   r&   r'   r(   r)   r*   intr,   r   r   r   r6   r$   r.   r   r   r   r   r]   f  s   
r]   c                       sX   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	edddZ
  ZS )GELUa3  Applies the Gaussian Error Linear Units function:

    .. math:: \text{GELU}(x) = x * \Phi(x)

    where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.

    When the approximate argument is 'tanh', Gelu is estimated with:
        :math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt(2 / \pi) * (x + 0.044715 * x^3)))

    Args:
        approximate (string, optional): the gelu approximation algorithm to use:
            ``'none'`` | ``'tanh'``. Default: ``'none'``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/GELU.png

    Examples::

        >>> m = nn.GELU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    approximatenoneN)rg   r   c                    s   t t|   || _d S r   )r   rf   r   rg   )r   rg   r   r   r   r     s    zGELU.__init__r   c                 C   s   t j|| jdS )N)rg   )r   Zgelurg   r   r   r   r   r     s    zGELU.forwardr3   c                 C   s   d | jS )Nzapproximate={})r"   rg   rc   r   r   r   r$     s    zGELU.extra_repr)rh   )r&   r'   r(   r)   r*   r6   r,   r   r   r   r$   r.   r   r   r   r   rf     s   
rf   c                       sX   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	e
dddZ  ZS )
Hardshrinka  Applies the Hard Shrinkage (Hardshrink) function element-wise.

    Hardshrink is defined as:

    .. math::
        \text{HardShrink}(x) =
        \begin{cases}
        x, & \text{ if } x > \lambda \\
        x, & \text{ if } x < -\lambda \\
        0, & \text{ otherwise }
        \end{cases}

    Args:
        lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardshrink.png

    Examples::

        >>> m = nn.Hardshrink()
        >>> input = torch.randn(2)
        >>> output = m(input)
    lambd      ?Nrj   r   c                    s   t t|   || _d S r   )r   ri   r   rj   r   rj   r   r   r   r     s    zHardshrink.__init__r   c                 C   s   t || jS r   )r   Z
hardshrinkrj   r   r   r   r   r     s    zHardshrink.forwardr3   c                 C   s   d | jS )Nz{})r"   rj   rc   r   r   r   r$     s    zHardshrink.extra_repr)rk   r&   r'   r(   r)   r*   r+   r,   r   r   r   r6   r$   r.   r   r   r   r   ri     s   
ri   c                       sd   e Zd ZU dZddgZeed< eed< deedd fdd	Ze	e	d
ddZ
edddZ  ZS )	LeakyReLUa?  Applies the element-wise function:

    .. math::
        \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)


    or

    .. math::
        \text{LeakyRELU}(x) =
        \begin{cases}
        x, & \text{ if } x \geq 0 \\
        \text{negative\_slope} \times x, & \text{ otherwise }
        \end{cases}

    Args:
        negative_slope: Controls the angle of the negative slope. Default: 1e-2
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    .. image:: ../scripts/activation_images/LeakyReLU.png

    Examples::

        >>> m = nn.LeakyReLU(0.1)
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   negative_slope{Gz?FN)rp   r   r   c                    s   t t|   || _|| _d S r   )r   ro   r   rp   r   )r   rp   r   r   r   r   r     s    zLeakyReLU.__init__r   c                 C   s   t || j| jS r   )r   Z
leaky_relurp   r   r   r   r   r   r     s    zLeakyReLU.forwardr3   c                 C   s   | j r
dnd}d| j|S )Nr    r!   znegative_slope={}{})r   r"   rp   r#   r   r   r   r$     s    zLeakyReLU.extra_repr)rq   F)r&   r'   r(   r)   r*   r-   r,   r+   r   r   r   r6   r$   r.   r   r   r   r   ro     s   
 ro   c                   @   s    e Zd ZdZeedddZdS )
LogSigmoida  Applies the element-wise function:

    .. math::
        \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/LogSigmoid.png

    Examples::

        >>> m = nn.LogSigmoid()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   c                 C   s
   t |S r   )r   Z
logsigmoidr   r   r   r   r     s    zLogSigmoid.forwardNrK   r   r   r   r   rr     s   rr   c                       sd   e Zd ZU dZddgZeed< eed< deedd fdd	Zeed
ddZ	e
dddZ  ZS )Softplusan  Applies the Softplus function :math:`\text{Softplus}(x) = \frac{1}{\beta} *
    \log(1 + \exp(\beta * x))` element-wise.

    SoftPlus is a smooth approximation to the ReLU function and can be used
    to constrain the output of a machine to always be positive.

    For numerical stability the implementation reverts to the linear function
    when :math:`input \times \beta > threshold`.

    Args:
        beta: the :math:`\beta` value for the Softplus formulation. Default: 1
        threshold: values above this revert to a linear function. Default: 20

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Softplus.png

    Examples::

        >>> m = nn.Softplus()
        >>> input = torch.randn(2)
        >>> output = m(input)
    betar   r      N)rt   r   r   c                    s   t t|   || _|| _d S r   )r   rs   r   rt   r   )r   rt   r   r   r   r   r   @  s    zSoftplus.__init__r   c                 C   s   t || j| jS r   )r   Zsoftplusrt   r   r   r   r   r   r   E  s    zSoftplus.forwardr3   c                 C   s   d | j| jS )Nzbeta={}, threshold={})r"   rt   r   rc   r   r   r   r$   H  s    zSoftplus.extra_repr)r   ru   rd   r   r   r   r   rs   "  s   
rs   c                       sX   e Zd ZU dZdgZeed< dedd fddZeedd	d
Z	e
dddZ  ZS )
Softshrinka  Applies the soft shrinkage function elementwise:

    .. math::
        \text{SoftShrinkage}(x) =
        \begin{cases}
        x - \lambda, & \text{ if } x > \lambda \\
        x + \lambda, & \text{ if } x < -\lambda \\
        0, & \text{ otherwise }
        \end{cases}

    Args:
        lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Softshrink.png

    Examples::

        >>> m = nn.Softshrink()
        >>> input = torch.randn(2)
        >>> output = m(input)
    rj   rk   Nrl   c                    s   t t|   || _d S r   )r   rv   r   rj   rm   r   r   r   r   i  s    zSoftshrink.__init__r   c                 C   s   t || jS r   )r   Z
softshrinkrj   r   r   r   r   r   m  s    zSoftshrink.forwardr3   c                 C   s
   t | jS r   )r6   rj   rc   r   r   r   r$   p  s    zSoftshrink.extra_repr)rk   rn   r   r   r   r   rv   L  s   
rv   c                       s   e Zd ZU dZdgZeej ed< eej ed< ddd	 fd
dZ	dd Z
 fddZdeeeee eee eeeee f dddZ  ZS )MultiheadAttentionaY  Allows the model to jointly attend to information
    from different representation subspaces as described in the paper:
    `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.

    Multi-Head Attention is defined as:

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O

    where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.

    ``forward()`` will use a special optimized implementation if all of the following
    conditions are met:

    - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
      restriction will be loosened in the future.)
    - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
    - training is disabled (using ``.eval()``)
    - dropout is 0
    - ``add_bias_kv`` is ``False``
    - ``add_zero_attn`` is ``False``
    - ``batch_first`` is ``True`` and the input is batched
    - ``kdim`` and ``vdim`` are equal to ``embed_dim``
    - at most one of ``key_padding_mask`` or ``attn_mask`` is passed
    - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
      nor ``attn_mask`` is passed

    If the optimized implementation is in use, a
    `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
    ``query``/``key``/``value`` to represent padding more efficiently than using a
    padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
    will be returned, and an additional speedup proportional to the fraction of the input
    that is padding can be expected.

    Args:
        embed_dim: Total dimension of the model.
        num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
            across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
        dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
        bias: If specified, adds bias to input / output projection layers. Default: ``True``.
        add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
        add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
            Default: ``False``.
        kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
        vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False`` (seq, batch, feature).

    Examples::

        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)

    batch_firstbias_kbias_vrH   TFNr3   c                    s  |
|d}t t|   || _|d k	r*|n|| _|d k	r<|n|| _| j|koT| j|k| _|| _|| _|	| _	|| | _
| j
| | jkstd| jdkrttj||ff|| _ttj|| jff|| _ttj|| jff|| _| dd  n@ttjd| |ff|| _| dd  | dd  | dd  |rPttjd| f|| _n| d	d  t||fd
|i|| _|rttjdd|ff|| _ttjdd|ff|| _nd  | _| _|| _|   d S )Ndevicedtypez(embed_dim must be divisible by num_headsFin_proj_weight   q_proj_weightk_proj_weightv_proj_weightin_proj_biasbiasr   )r   rw   r   	embed_dimkdimvdim_qkv_same_embed_dim	num_headsdropoutrx   Zhead_dimrF   r
   rJ   emptyr   r   r   Zregister_parameterr~   r   r   out_projry   rz   add_zero_attn_reset_parameters)r   r   r   r   r   Zadd_bias_kvr   r   r   rx   r|   r}   factory_kwargsr   r   r   r     s<    


zMultiheadAttention.__init__c                 C   s   | j rt| j nt| j t| j t| j | jd k	rTt| jd t| jj	d | j
d k	rht| j
 | jd k	r|t| j d S )NrH   )r   r	   r~   r   r   r   r   r   r   r   ry   r   rz   rc   r   r   r   r     s    






z$MultiheadAttention._reset_parametersc                    s$   d|krd|d< t t| | d S )Nr   T)r   rw   __setstate__r   stater   r   r   r     s    zMultiheadAttention.__setstate__)querykeyr   key_padding_maskneed_weights	attn_maskaverage_attn_weightsr   c                 C   s\  |  dk}d}	|s&d|   }	n||k	s6||k	r<d}	n| jdk	rn|j| jjkrnd|j d| jj d}	n| jdk	r|j| jjkrd|j d	| jj d}	n| jrd
}	n| jsd}	nv| jdk	rd}	nf| jdk	rd}	nV| jrd| j d}	n@| j	rd}	n4| j
sd}	n&|dk	rd}	n|jr.|dk	r.d}	|	s|||| j| j| jj| jjf}
tj|
rfd}	n<tdd |
D sd}	n"t rtdd |
D rd}	|	st|||| j| j| j| j| jj| jj|dk	r|n|||S |jp|jp|j}|rtdd|	  | jr|r||krh||krL|dd } }}ndd ||fD \}}|}ndd |||fD \}}}| j
stj|||| j| j| j| j| j| j| j	| j| jj| jj| j|||d | j| j| j|d!\}}nLtj|||| j| j| j| j| j| j| j	| j| jj| jj| j||||d"\}}| jrP|rP|dd|fS ||fS dS )#a#  
    Args:
        query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
            or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
            :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
            Queries are compared against key-value pairs to produce the output.
            See "Attention Is All You Need" for more details.
        key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
            or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
            :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
            See "Attention Is All You Need" for more details.
        value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
            ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
            sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
            See "Attention Is All You Need" for more details.
        key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
            to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
            Binary and byte masks are supported.
            For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
            the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
            value will be ignored.
        need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
            Default: ``True``.
        attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
            :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
            :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
            broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
            Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
            corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
            corresponding position is not allowed to attend. For a float mask, the mask values will be added to
            the attention weight.
        average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
            heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
            effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)

    Outputs:
        - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
          :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
          where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
          embedding dimension ``embed_dim``.
        - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
          returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
          :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
          :math:`S` is the source sequence length. If ``average_weights=False``, returns attention weights per
          head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.

        .. note::
            `batch_first` argument is ignored for unbatched inputs.
        r   r!   z5input not batched; expected query.dim() of 3 but got zKnon-self attention was used (query, key, and value are not the same Tensor)Nzdtypes of query (z) and self.in_proj_bias (z) don't matchz) and self.in_proj_weight (ztraining is enabledzbatch_first was not Truezself.bias_k was not Nonezself.bias_v was not Nonezdropout was z, required zerozadd_zero_attn was enabledz _qkv_same_embed_dim was not Truezattn_mask was not Nonez9key_padding_mask is not supported with NestedTensor inputz'some Tensor argument has_torch_functionc                 S   s    g | ]}|j pd t|jkqS )cpu)Zis_cudar6   r|   .0xr   r   r   
<listcomp>S  s     z.MultiheadAttention.forward.<locals>.<listcomp>z,some Tensor argument is neither CUDA nor CPUc                 S   s   g | ]
}|j qS r   )Zrequires_gradr   r   r   r   r   U  s     zhgrad is enabled and at least one of query or the input/output projection weights or biases requires_gradzKMultiheadAttention does not support NestedTensor outside of its fast path. z"The fast path was not hit because r   r   c                 S   s   g | ]}| d dqS r   r   	transposer   r   r   r   r   p  s     c                 S   s   g | ]}| d dqS r   r   r   r   r   r   r   s  s     T)	r<   r   r   r   Zuse_separate_proj_weightr   r   r   r   )r<   r   r   r   r   )r^   r   r}   r~   r<   rx   ry   rz   r   r   r   Z	is_nestedr   weightr   rJ   Z	overridesZhas_torch_functionallZis_grad_enabledanyZ_native_multi_head_attentionr   r   rF   r   r   Zmulti_head_attention_forwardr   r   r   )r   r   r   r   r   r   r   r   Z
is_batchedZwhy_not_fast_pathZtensor_argsZ
any_nestedZattn_outputZattn_output_weightsr   r   r   r     s    4





                        
zMultiheadAttention.forward)	rH   TFFNNFNN)NTNT)r&   r'   r(   r)   r*   r   rJ   r   r,   r   r   r   r-   r   r   r.   r   r   r   r   rw   t  s2   
6          *       rw   c                       sZ   e Zd ZU dZdgZeed< deedd fddZe	e	d	d
dZ
edddZ  ZS )PReLUa  Applies the element-wise function:

    .. math::
        \text{PReLU}(x) = \max(0,x) + a * \min(0,x)

    or

    .. math::
        \text{PReLU}(x) =
        \begin{cases}
        x, & \text{ if } x \geq 0 \\
        ax, & \text{ otherwise }
        \end{cases}

    Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
    parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
    a separate :math:`a` is used for each input channel.


    .. note::
        weight decay should not be used when learning :math:`a` for good performance.

    .. note::
        Channel dim is the 2nd dim of input. When input has dims < 2, then there is
        no channel dim and the number of channels = 1.

    Args:
        num_parameters (int): number of :math:`a` to learn.
            Although it takes an int as input, there is only two values are legitimate:
            1, or the number of channels at input. Default: 1
        init (float): the initial value of :math:`a`. Default: 0.25

    Shape:
        - Input: :math:`( *)` where `*` means, any number of additional
          dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Attributes:
        weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).

    .. image:: ../scripts/activation_images/PReLU.png

    Examples::

        >>> m = nn.PReLU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    num_parametersr         ?N)r   initr   c                    s<   ||d}|| _ tt|   ttj|f||| _d S )Nr{   )	r   r   r   r   r
   rJ   r   Zfill_r   )r   r   r   r|   r}   r   r   r   r   r     s    
zPReLU.__init__r   c                 C   s   t || jS r   )r   Zprelur   r   r   r   r   r     s    zPReLU.forwardr3   c                 C   s   d | jS )Nznum_parameters={})r"   r   rc   r   r   r   r$     s    zPReLU.extra_repr)r   r   NN)r&   r'   r(   r)   r*   re   r,   r+   r   r   r   r6   r$   r.   r   r   r   r   r     s   
0    r   c                   @   s    e Zd ZdZeedddZdS )Softsigna  Applies the element-wise function:

    .. math::
        \text{SoftSign}(x) = \frac{x}{ 1 + |x|}

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Softsign.png

    Examples::

        >>> m = nn.Softsign()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   c                 C   s
   t |S r   )r   Zsoftsignr   r   r   r   r     s    zSoftsign.forwardNrK   r   r   r   r   r     s   r   c                   @   s    e Zd ZdZeedddZdS )
Tanhshrinka  Applies the element-wise function:

    .. math::
        \text{Tanhshrink}(x) = x - \tanh(x)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Tanhshrink.png

    Examples::

        >>> m = nn.Tanhshrink()
        >>> input = torch.randn(2)
        >>> output = m(input)
    r   c                 C   s
   t |S r   )r   Z
tanhshrinkr   r   r   r   r     s    zTanhshrink.forwardNrK   r   r   r   r   r     s   r   c                       sf   e Zd ZU dZdgZee ed< dee dd fddZ fddZ	e
e
d	d
dZdd Z  ZS )Softmina4  Applies the Softmin function to an n-dimensional input Tensor
    rescaling them so that the elements of the n-dimensional output Tensor
    lie in the range `[0, 1]` and sum to 1.

    Softmin is defined as:

    .. math::
        \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    Args:
        dim (int): A dimension along which Softmin will be computed (so every slice
            along dim will sum to 1).

    Returns:
        a Tensor of the same dimension and shape as the input, with
        values in the range [0, 1]

    Examples::

        >>> m = nn.Softmin()
        >>> input = torch.randn(2, 3)
        >>> output = m(input)
    r^   Nr`   c                    s   t t|   || _d S r   )r   r   r   r^   ra   r   r   r   r     s    zSoftmin.__init__c                    s    t  | t| dsd | _d S Nr^   r   r   hasattrr^   r   r   r   r   r   "  s    
zSoftmin.__setstate__r   c                 C   s   t j|| jddS N   Z_stacklevel)r   Zsoftminr^   r   r   r   r   r   '  s    zSoftmin.forwardc                 C   s   dj | jdS Nz	dim={dim})r^   rb   rc   r   r   r   r$   *  s    zSoftmin.extra_repr)Nr&   r'   r(   r)   r*   r   re   r,   r   r   r   r   r$   r.   r   r   r   r   r     s   
r   c                       sl   e Zd ZU dZdgZee ed< dee dd fddZ fddZ	e
e
d	d
dZedddZ  ZS )Softmaxa  Applies the Softmax function to an n-dimensional input Tensor
    rescaling them so that the elements of the n-dimensional output Tensor
    lie in the range [0,1] and sum to 1.

    Softmax is defined as:

    .. math::
        \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}

    When the input Tensor is a sparse tensor then the unspecifed
    values are treated as ``-inf``.

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    Returns:
        a Tensor of the same dimension and shape as the input with
        values in the range [0, 1]

    Args:
        dim (int): A dimension along which Softmax will be computed (so every slice
            along dim will sum to 1).

    .. note::
        This module doesn't work directly with NLLLoss,
        which expects the Log to be computed between the Softmax and itself.
        Use `LogSoftmax` instead (it's faster and has better numerical properties).

    Examples::

        >>> m = nn.Softmax(dim=1)
        >>> input = torch.randn(2, 3)
        >>> output = m(input)

    r^   Nr`   c                    s   t t|   || _d S r   )r   r   r   r^   ra   r   r   r   r   V  s    zSoftmax.__init__c                    s    t  | t| dsd | _d S r   r   r   r   r   r   r   Z  s    
zSoftmax.__setstate__r   c                 C   s   t j|| jddS r   )r   softmaxr^   r   r   r   r   r   _  s    zSoftmax.forwardr3   c                 C   s   dj | jdS r   rb   rc   r   r   r   r$   b  s    zSoftmax.extra_repr)N)r&   r'   r(   r)   r*   r   re   r,   r   r   r   r   r6   r$   r.   r   r   r   r   r   -  s   
%r   c                   @   s    e Zd ZdZeedddZdS )	Softmax2da|  Applies SoftMax over features to each spatial location.

    When given an image of ``Channels x Height x Width``, it will
    apply `Softmax` to each location :math:`(Channels, h_i, w_j)`

    Shape:
        - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
        - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)

    Returns:
        a Tensor of the same dimension and shape as the input with
        values in the range [0, 1]

    Examples::

        >>> m = nn.Softmax2d()
        >>> # you softmax over the 2nd dimension
        >>> input = torch.randn(2, 3, 12, 13)
        >>> output = m(input)
    r   c                 C   s0   |  dks |  dks tdtj|dddS )N   r   z-Softmax2d requires a 3D or 4D tensor as inputr   r   )r^   rF   r   r   r   r   r   r   r   |  s     zSoftmax2d.forwardNrK   r   r   r   r   r   f  s   r   c                       sf   e Zd ZU dZdgZee ed< dee dd fddZ fddZ	e
e
d	d
dZdd Z  ZS )
LogSoftmaxa  Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional
    input Tensor. The LogSoftmax formulation can be simplified as:

    .. math::
        \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    Args:
        dim (int): A dimension along which LogSoftmax will be computed.

    Returns:
        a Tensor of the same dimension and shape as the input with
        values in the range [-inf, 0)

    Examples::

        >>> m = nn.LogSoftmax()
        >>> input = torch.randn(2, 3)
        >>> output = m(input)
    r^   Nr`   c                    s   t t|   || _d S r   )r   r   r   r^   ra   r   r   r   r     s    zLogSoftmax.__init__c                    s    t  | t| dsd | _d S r   r   r   r   r   r   r     s    
zLogSoftmax.__setstate__r   c                 C   s   t j|| jddS r   )r   Zlog_softmaxr^   r   r   r   r   r     s    zLogSoftmax.forwardc                 C   s   dj | jdS r   rb   rc   r   r   r   r$     s    zLogSoftmax.extra_repr)Nr   r   r   r   r   r     s   
r   )0rD   typingr   r   rJ   r   Zlinearr   Ztorch.nn.initr   r   r	   Ztorch.nn.parameterr
   moduler   r!   r   r   r   r/   r7   r=   rG   rI   rL   rO   rQ   rR   rS   rT   r[   r\   r]   rf   ri   ro   rr   rs   rv   rw   r   r   r   r   r   r   r   r   r   r   r   <module>   sN   2*AE')$*.,1!(*2*(  B/9