U
    dW                     @   sH   d dl mZ ddlmZ ddlmZ G dd deZG dd	 d	eZd
S )   )Module   )
functional    )Tensorc                       sd   e Zd ZU dZdddgZeed< eed< eed< deeedd	 fd
dZe	e	e	dddZ
  ZS )PairwiseDistancea  
    Computes the pairwise distance between vectors :math:`v_1`, :math:`v_2` using the p-norm:

    .. math ::
        \Vert x \Vert _p = \left( \sum_{i=1}^n  \vert x_i \vert ^ p \right) ^ {1/p}.

    Args:
        p (real): the norm degree. Default: 2
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-6
        keepdim (bool, optional): Determines whether or not to keep the vector dimension.
            Default: False
    Shape:
        - Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`
        - Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1
        - Output: :math:`(N)` or :math:`()` based on input dimension.
          If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.
    Examples::
        >>> pdist = nn.PairwiseDistance(p=2)
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> output = pdist(input1, input2)
    normepskeepdim       @ư>FN)pr	   r
   returnc                    s$   t t|   || _|| _|| _d S N)superr   __init__r   r	   r
   )selfr   r	   r
   	__class__ =/tmp/pip-unpacked-wheel-ua33x9lu/torch/nn/modules/distance.pyr   $   s    zPairwiseDistance.__init__x1x2r   c                 C   s   t ||| j| j| jS r   )FZpairwise_distancer   r	   r
   r   r   r   r   r   r   forward*   s    zPairwiseDistance.forward)r   r   F)__name__
__module____qualname____doc____constants__float__annotations__boolr   r   r   __classcell__r   r   r   r   r      s   

r   c                       sX   e Zd ZU dZddgZeed< eed< deedd fdd	Ze	e	e	d
ddZ
  ZS )CosineSimilaritya  Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.

    .. math ::
        \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.

    Args:
        dim (int, optional): Dimension where cosine similarity is computed. Default: 1
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-8
    Shape:
        - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
        - Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,
              and broadcastable with x1 at other dimensions.
        - Output: :math:`(\ast_1, \ast_2)`
    Examples::
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        >>> output = cos(input1, input2)
    dimr	   r   :0yE>N)r'   r	   r   c                    s   t t|   || _|| _d S r   )r   r&   r   r'   r	   )r   r'   r	   r   r   r   r   G   s    zCosineSimilarity.__init__r   c                 C   s   t ||| j| jS r   )r   Zcosine_similarityr'   r	   r   r   r   r   r   L   s    zCosineSimilarity.forward)r   r(   )r   r   r   r    r!   intr#   r"   r   r   r   r%   r   r   r   r   r&   .   s   
r&   N)	moduler    r   r   Ztorchr   r   r&   r   r   r   r   <module>   s   '