U
    dt                     @   s  d dl Z d dlZd dlZd dlZd dlmZ d dlmZ d dl	m
Z
 d dlmZ d dlmZ d dlmZ d dlmZ d d	lmZ d d
lmZ d dlmZ d dlmZ ddlmZ ddlmZmZ eeZ dd Z!dDddZ"dEddZ#dFddZ$dd Z%dGddZ&dHdd Z'dId"d#Z(dJd%d&Z)dKd'd(Z*dLd)d*Z+dMd,d-Z,d.d/ Z-dNd1d2Z.d3d4 Z/d5d6 Z0dOd8d9Z1dPd:d;Z2dQd<d=Z3d>d? Z4d@dA Z5dRdBdCZ6dS )S    N)Optional)range)
struct_pb2)Summary)HistogramProto)SummaryMetadata)TensorProto)TensorShapeProto)TextPluginData)PrCurvePluginData)
layout_pb2   )make_np)_prepare_videoconvert_to_HWCc                 C   s,   t | tjs|  n| }|jtjkr(dS dS )Nr      )
isinstancenpZndarraynumpydtypeuint8)tensorZ	converted r   C/tmp/pip-unpacked-wheel-ua33x9lu/torch/utils/tensorboard/summary.py_calc_scale_factor   s    r   black   c	                 C   s   ddl m}	m}
 |
 }|	| }||||f\}}}}|j||f||f||f||f||fg||d |r|}||\}}td| }|j	||| d|  f|| |fg|d |j
|| || | f|||d | S )Nr   )	ImageDraw	ImageFont)widthfillg?r   )r    )r    font)PILr   r   Zload_defaultZDrawlinegetsizer   ceilZ	rectangletext)imageZxminZyminZxmaxZymaxdisplay_strcolorZ
color_textZ	thicknessr   r   r!   ZdrawleftrighttopZbottomZtext_bottom
text_widthZtext_heightmarginr   r   r   _draw_single_box   s4    
 
r/   c                    s  ddl }ddlm} ddlm}m}m mm}m	} ddl
m}	m}
m}m}m} ddlm}m}m} ttstd tdt|tstd td|pi }t|tstd	| D ]B\}kst|trtfd
d|D stdqg }| } D ]\}|dkr,qt|tsDt|tr||j _ |krvt!j"dd | D d}nd}|#||$d|d qt||r||j _%|krt!j"dd | D d}nd}|#||$d|d qt|t&rX||j _'|kr6t!j"dd | D d}nd}|#||$d|d qt||j(rt)|d }||j _ |#||$dd qt*dq|||
d}t+t+j,|	|- dd}t.t.j$||dgd} fdd|/ D }|||d}|||
d}t+t+j,|	|- dd}t.t.j$||dgd}||$d d!}|||
d"}t+t+j,|	|- dd}t.t.j$||dgd}|||fS )#a2  Outputs three `Summary` protocol buffers needed by hparams plugin.
    `Experiment` keeps the metadata of an experiment, such as the name of the
      hyperparameters and the name of the metrics.
    `SessionStartInfo` keeps key-value pairs of the hyperparameters
    `SessionEndInfo` describes status of the experiment e.g. STATUS_SUCCESS

    Args:
      hparam_dict: A dictionary that contains names of the hyperparameters
        and their values.
      metric_dict: A dictionary that contains names of the metrics
        and their values.
      hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that
        contains names of the hyperparameters and all discrete values they can hold

    Returns:
      The `Summary` protobufs for Experiment, SessionStartInfo and
        SessionEndInfo
    r   N)string_types)
Experiment
HParamInfo
MetricInfo
MetricNameStatusDataType)PLUGIN_NAMEPLUGIN_DATA_VERSIONEXPERIMENT_TAGSESSION_START_INFO_TAGSESSION_END_INFO_TAG)HParamsPluginDataSessionEndInfoSessionStartInfoz>parameter: hparam_dict should be a dictionary, nothing logged.z>parameter: metric_dict should be a dictionary, nothing logged.zIparameter: hparam_domain_discrete should be a dictionary, nothing logged.c                 3   s    | ]}t |t  V  qd S )N)r   type.0d)hparam_dictkr   r   	<genexpr>   s     zhparams.<locals>.<genexpr>zWparameter: hparam_domain_discrete[{}] should be a list of same type as hparam_dict[{}].c                 S   s   g | ]}t j|d qS ))number_valuer   Valuer@   r   r   r   
<listcomp>   s   zhparams.<locals>.<listcomp>)valuesZDATA_TYPE_FLOAT64)namer?   domain_discretec                 S   s   g | ]}t j|d qS ))string_valuerG   r@   r   r   r   rI      s   ZDATA_TYPE_STRINGc                 S   s   g | ]}t j|d qS ))
bool_valuerG   r@   r   r   r   rI      s   ZDATA_TYPE_BOOL)rK   r?   z=value should be one of int, float, str, bool, or torch.Tensor)Zsession_start_infoversionplugin_namecontentplugin_data)tagmetadatavaluec                    s   g | ]} |d dqS )rU   )rK   r   )rA   rD   )r3   r4   r   r   rI      s     )Zhparam_infosZmetric_infos)Z
experimentrO   ZSTATUS_SUCCESS)status)Zsession_end_inforO   )0torchsixr0   Z#tensorboard.plugins.hparams.api_pb2r1   r2   r3   r4   r5   r6   Z$tensorboard.plugins.hparams.metadatar7   r8   r9   r:   r;   Z+tensorboard.plugins.hparams.plugin_data_pb2r<   r=   r>   r   dictloggerwarning	TypeErroritemslistallformatintfloathparamsrF   r   Z	ListValueappendrH   rM   boolrN   ZTensorr   
ValueErrorr   
PluginDataSerializeToStringr   keys)rC   Zmetric_dictZhparam_domain_discreter[   r0   r1   r2   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   vZhpsZssirL   rR   smdZmtsexpZseir   )r3   r4   rC   rD   r   rg   I   s     




 



   rg   Fc                 C   s   t |}| jdkstdt|}|rxt|gdd}|rJt|gdd}tjdd}t|d	}ttj	| ||d
gdS ttj	| |dgdS dS )a  Outputs a `Summary` protocol buffer containing a single scalar value.
    The generated Summary has a Tensor.proto containing the input Tensor.
    Args:
      name: A name for the generated node. Will also serve as the series name in
        TensorBoard.
      tensor: A real numeric Tensor containing a single value.
      collections: Optional list of graph collections keys. The new summary op is
        added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
      new_style: Whether to use new style (tensor field) or old style (simple_value
        field). New style could lead to faster data loading.
    Returns:
      A scalar `Tensor` of type `string`. Which contains a `Summary` protobuf.
    Raises:
      ValueError: If tensor has the wrong shape or type.
    r   zscalar should be 0DDT_FLOAT)	float_valr   Z	DT_DOUBLE)Z
double_valr   ZscalarsrQ   rS   rU   r   rV   rW   )rU   Zsimple_valueN)
r   squeezendimAssertionErrorrf   r   r   rk   r   rH   )rK   scalarcollectionsZ	new_styleZdouble_precisionr   rT   ro   r   r   r   rx     s$    

rx   c           	   	   C   s,   t |||||||d}ttj| |dgdS )a  Outputs a `Summary` protocol buffer with a histogram.
    The generated
    [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
    has one summary value containing a histogram for `values`.
    Args:
      name: A name for the generated node. Will also serve as a series name in
        TensorBoard.
      min: A float or int min value
      max: A float or int max value
      num: Int number of values
      sum: Float or int sum of all values
      sum_squares: Float or int sum of squares for all values
      bucket_limits: A numeric `Tensor` with upper value per bucket
      bucket_counts: A numeric `Tensor` with number of values per bucket
    Returns:
      A scalar `Tensor` of type `string`. The serialized `Summary` protocol
      buffer.
    minmaxnumsumsum_squaresZbucket_limitZbucketrU   ZhistorW   )r   r   rH   )	rK   r{   r|   r}   r~   r   Zbucket_limitsZbucket_countshistr   r   r   histogram_raw/  s    	r   c                 C   s0   t |}t|t||}ttj| |dgdS )ad  Outputs a `Summary` protocol buffer with a histogram.
    The generated
    [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
    has one summary value containing a histogram for `values`.
    This op reports an `InvalidArgument` error if any value is not finite.
    Args:
      name: A name for the generated node. Will also serve as a series name in
        TensorBoard.
      values: A real numeric `Tensor`. Any shape. Values to use to
        build the histogram.
    Returns:
      A scalar `Tensor` of type `string`. The serialized `Summary` protocol
      buffer.
    r   rW   )r   make_histogramastyperf   r   rH   )rK   rJ   binsmax_binsr   r   r   r   	histogramO  s    r   c              	   C   s  | j dkrtd| d} tj| |d\}}t|}|dk	r||kr|| }|| }|dkrztj|d|| ggddd}|d|jdd}t|j d	 f|j	}|dd| |dd< |d |d< |}t
tj|dtjd
}	tj|	d|	d d	 gdd\}
}t|
}
t|d	 }~	|
dkr2||
d	 | ntdg|d| g}||
|d	  }|j dksr|j dkrztd| | }t|  |  t| |  || | dS )zDConvert values into a histogram proto using logic from histogram.cc.r   zThe input has no element.)r   NZconstant)Z	pad_widthmodeZconstant_values)Zaxisr   )r   r+   )Zsidez1The histogram is empty, please file a bug report.rz   )sizerj   reshaper   r   lenpadr~   emptyr   cumsumZgreaterint32Zsearchsortedre   Zconcatenatedotr   r{   r|   tolist)rJ   r   r   countsZlimitsZnum_binsZsubsamplingZsubsampling_remainderZ
new_limitsZ
cum_countsstartendZsum_sqr   r   r   r   d  sP    

 0
r   NCHWc                 C   sX   t |}t||}t|}|tj}|| tj}t||d}ttj	| |dgdS )a  Outputs a `Summary` protocol buffer with images.
    The summary has up to `max_images` summary values containing images. The
    images are built from `tensor` which must be 3-D with shape `[height, width,
    channels]` and where `channels` can be:
    *  1: `tensor` is interpreted as Grayscale.
    *  3: `tensor` is interpreted as RGB.
    *  4: `tensor` is interpreted as RGBA.
    The `name` in the outputted Summary.Value protobufs is generated based on the
    name, with a suffix depending on the max_outputs setting:
    *  If `max_outputs` is 1, the summary value tag is '*name*/image'.
    *  If `max_outputs` is greater than 1, the summary value tags are
       generated sequentially as '*name*/image/0', '*name*/image/1', etc.
    Args:
      tag: A name for the generated node. Will also serve as a series name in
        TensorBoard.
      tensor: A 3-D `uint8` or `float32` `Tensor` of shape `[height, width,
        channels]` where `channels` is 1, 3, or 4.
        'tensor' can either have values in [0, 1] (float32) or [0, 255] (uint8).
        The image() function will scale the image values to [0, 255] by applying
        a scale factor of either 1 (uint8) or 255 (float32).
    Returns:
      A scalar `Tensor` of type `string`. The serialized `Summary` protocol
      buffer.
    )rescalerU   r'   rW   )
r   r   r   r   r   float32r   
make_imager   rH   )rU   r   r   dataformatsscale_factorr'   r   r   r   r'     s    
r'   CHWc                 C   s\   t |}t||}t |}|tjt| }t|tj|||d}ttj	| |dgdS )z0Outputs a `Summary` protocol buffer with images.)r   roislabelsr   rW   )
r   r   r   r   r   r   r   r   r   rH   )rU   Ztensor_imageZtensor_boxesr   r   r   r'   r   r   r   image_boxes  s    

   r   c              
   C   sf   |j d }t|}|D ]J}t| ||df ||df ||df ||df |d krRd n|| dd} q| S )Nr   r   r      ZRed)r(   r)   )shaper   r/   )Z
disp_imageZboxesr   Z	num_boxesZlist_gtir   r   r   
draw_boxes  s    




	r   c                 C   s   ddl m} | j\}}}t|| }t|| }	|| }
|dk	rPt|
||d}
|
|	|f|j}
ddl}|	 }|
j
|dd | }|  tj||||dS )z<Convert a numpy representation of an image to Image protobufr   )ImageN)r   ZPNG)rd   heightr   Z
colorspaceZencoded_image_string)r"   r   r   re   Z	fromarrayr   resizeZ	ANTIALIASioBytesIOsavegetvaluecloser   )r   r   r   r   r   r   r   ZchannelZscaled_heightZscaled_widthr'   r   outputZimage_stringr   r   r   r     s&    
r      c                 C   sT   t |}t|}t|}|tj}|| tj}t||}ttj	| |dgdS )Nr   rW   )
r   r   r   r   r   r   r   
make_videor   rH   )rU   r   fpsr   videor   r   r   r     s    
r   c                 C   sX  zdd l }W n tk
r*   td Y d S X zddl m} W n  tk
r\   tdd Y d S X dd l}| j\}}}}|jt| |d}	|jddd	j	}
z|	j
|
dd d
 W nL tk
r   z|	j
|
ddd W n" tk
r   |	j
|
dd Y nX Y nX t|
d}| }W 5 Q R X zt|
 W n  tk
rD   td Y nX tj||||dS )Nr   zadd_video needs package moviepy)editorz6moviepy is installed, but can't import moviepy.editor.z2Some packages could be missing [imageio, requests])r   z.gifF)suffixdelete)verboser^   )r   progress_bar)r   rbz5The temporary file used by moviepy cannot be deleted.r   )moviepyImportErrorprintr   tempfiler   ZImageSequenceCliprb   NamedTemporaryFilerK   Z	write_gifr`   openreadosremoveOSErrorr^   r_   r   r   )r   r   r   Zmpyr   thwcclipfilenamefZtensor_stringr   r   r   r      sH       r   D  c           
      C   s   t |}| }t| dkr4td |dd}|jdksFtd|t	tj
j d}dd l}dd l}| }||d}|d |d || ||j |  | }|  tj|d|jd |d	d
}	ttj| |	dgdS )Nr   z4warning: audio amplitude out of range, auto clipped.r   z%input tensor should be 1 dimensional.z<i2r   wbr   z	audio/wav)sample_rateZnum_channelsZlength_framesZencoded_audio_stringcontent_type)rU   audiorW   )r   ru   absr|   r   r   rv   rw   r   ZiinfoZint16r   r   waver   r   ZsetnchannelsZsetsampwidthZsetframerateZwriteframesdatar   r   r   ZAudior   rH   )
rU   r   r   arrayr   r   ZfioZ
wave_writeZaudio_stringr   r   r   r   r   +  s4    


r   c                 C   s  g }|   D ]\}}g }|  D ]\}}|d }|d dkrt|dksLttjtjj|d |d |d dgd}tj||d}	ntj|d	}
tj||
d
}	||	 q |tj	||d qtj
|d} tjdd}t|d}td|  gt d}ttjd||dgdS )Nr   r   ZMarginr   r   )rX   lowerupper)Zseries)titler.   rY   )r   	multiline)r   chart)categorycustom_scalarsrs   rS   	DT_STRINGr   Z
string_valtensor_shapeZcustom_scalars__config__rt   rW   )ra   r   rw   r   ZMarginChartContentZSeriesZChartZMultilineChartContentrh   ZCategoryZLayoutr   rk   r   rl   r	   r   rH   )Zlayout
categoriesrD   rn   ZchartsZ
chart_nameZchart_meatadatatagsZmgccr   ZmlccrT   ro   r   r   r   r   r   J  s@      
r   c                 C   sf   t jdtdd d}t |d}td|jddgttjd	d
gdd}ttj	| d ||dgdS )Nr&   r   )rO   rP   rS   r   utf_8)encodingr   r   Zdimr   z/text_summaryrU   rV   r   rW   )
r   rk   r
   rl   r   encoder	   Dimr   rH   )rU   r&   rT   ro   r   r   r   r   r&   o  s     
r&      c	                 C   s   |dkrd}t ||||||f}	td|d }
tjd|
d}t|d}td|	d t	t	j
|	jd d	t	j
|	jd
 d	gdd}ttj| ||dgdS )Nr   r   rO   num_thresholds	pr_curvesrP   rS   rq   r   r   r   r   r   rr   r   r   rW   )r   stackr   rl   r   rk   r   r   r   r	   r   r   r   rH   )rU   tpfptnfn	precisionrecallr   weightsr   pr_curve_plugin_datarT   ro   r   r   r   r   pr_curve_raw~  s,     
 

r   c           
      C   s   t |d}t||||d}td|d }tjd|d}t|d}td|d	 t	t	j
|jd d
t	j
|jd d
gdd}	ttj| ||	dgdS )Nr   )r   r   r   r   r   rP   rS   rq   r   r   r   r   r   r   rW   )r{   compute_curver   rl   r   rk   r   r   r   r	   r   r   r   rH   )
rU   r   predictionsr   r   r   r   rT   ro   r   r   r   r   pr_curve  s4    
    
 

r   c                 C   s
  d}|d krd}t t ||d  }| t j}d|d f}t j||||| d\}}	t j|||d| | d\}
}	t |d d d d d d }t |
d d d d d d }|d | }|d | }|t |||  }|t |||  }t ||||||fS )NgHz>g      ?r   r   )r   r   r   r   )	r   r   floorr   Zfloat64r   r   maximumr   )r   r   r   r   Z_MINIMUM_COUNTZbucket_indicesZfloat_labelsZhistogram_rangeZ
tp_buckets_Z
fp_bucketsr   r   r   r   r   r   r   r   r   r     s2    


r   c              	   C   s   ddl }ddlm} ||}|j| ||||j||d}	td|d t	t	j
|jd dt	j
|jd dt	j
|jd	 dgd
d}tj|| |||	d}
|
S )a  Creates a tensor summary with summary metadata.

    Args:
      name: Uniquely identifiable name of the summary op. Could be replaced by
        combination of name and type to make it unique even outside of this
        summary.
      display_name: Will be used as the display name in TensorBoard.
        Defaults to `name`.
      description: A longform readable description of the summary data. Markdown
        is supported.
      tensor: Tensor to display in summary.
      content_type: Type of content inside the Tensor.
      components: Bitmask representing present parts (vertices, colors, etc.) that
        belong to the summary.
      json_config: A string, JSON-serialized dictionary of ThreeJS classes
        configuration.

    Returns:
      Tensor summary with metadata.
    r   NrV   )json_configrq   r   r   r   r   r   r   rt   )r[   tensorboard.plugins.meshrV   Z	as_tensorZcreate_summary_metadatar   r   r   r   r	   r   r   rH   Zget_instance_name)rK   display_namedescriptionr   r   
componentsr   r[   rV   Ztensor_metadataZtensor_summaryr   r   r   _get_tensor_summary  s8    


r  c                 C   s   d}| dk	rt j| dd}|S )z6Parses and returns JSON string from python dictionary.z{}NT)	sort_keys)jsondumps)config_dictr   r   r   r   _get_json_config  s    r  c                 C   s   ddl m} ddlm} t|}	g }
||jf||jf||jfg}dd |D }|dd |D }|D ]"\}}|
	t
| ||||||	 qft|
dS )a(  Outputs a merged `Summary` protocol buffer with a mesh/point cloud.

    Args:
      tag: A name for this summary operation.
      vertices: Tensor of shape `[dim_1, ..., dim_n, 3]` representing the 3D
        coordinates of vertices.
      faces: Tensor of shape `[dim_1, ..., dim_n, 3]` containing indices of
        vertices within each triangle.
      colors: Tensor of shape `[dim_1, ..., dim_n, 3]` containing colors for each
        vertex.
      display_name: If set, will be used as the display name in TensorBoard.
        Defaults to `name`.
      description: A longform readable description of the summary data. Markdown
        is supported.
      config_dict: Dictionary with ThreeJS classes names and configuration.

    Returns:
      Merged summary for mesh/point cloud representation.
    r   )MeshPluginDatar   c                 S   s   g | ]}|d  dk	r|qS )r   Nr   )rA   r   r   r   r   rI   9  s      zmesh.<locals>.<listcomp>c                 S   s   g | ]\}}|qS r   r   )rA   r   r   r   r   r   rI   ;  s     rW   )Z(tensorboard.plugins.mesh.plugin_data_pb2r  r   rV   r  ZVERTEXZFACEZCOLORZget_components_bitmaskrh   r  r   )rU   ZverticescolorsZfacesr  r   r   r  rV   r   Z	summariesZtensorsr   r   r   r   r   r   mesh  s2    r	  )r   r   r   )NNN)NFF)N)N)r   r   )r   r   N)N)r   NN)r   )r   )r   N)r   N)NN)NN)7r  loggingr   r   r   typingr   Z	six.movesr   Zgoogle.protobufr   Z$tensorboard.compat.proto.summary_pb2r   r   r   Z#tensorboard.compat.proto.tensor_pb2r   Z)tensorboard.compat.proto.tensor_shape_pb2r	   Z(tensorboard.plugins.text.plugin_data_pb2r
   Z,tensorboard.plugins.pr_curve.plugin_data_pb2r   Z!tensorboard.plugins.custom_scalarr   Z_convert_npr   _utilsr   r   	getLogger__name__r^   r   r/   rg   rx   r   r   r   r'   r   r   r   r   r   r   r   r&   r   r   r   r  r  r	  r   r   r   r   <module>   sd   
   
*
 ?
( 

6
$     



+
%   


!;
   